Initial commit

This adds the initial contents of the repository.
This commit is contained in:
Bill Jacobs
2016-05-23 13:51:21 -07:00
parent d3e6f9ae02
commit 389f8ea4e2
20 changed files with 3008 additions and 1 deletions

7
.classpath Normal file
View File

@@ -0,0 +1,7 @@
<?xml version="1.0" encoding="UTF-8"?>
<classpath>
<classpathentry kind="src" path="src"/>
<classpathentry kind="con" path="org.eclipse.jdt.launching.JRE_CONTAINER/org.eclipse.jdt.internal.debug.ui.launcher.StandardVMType/JavaSE-1.7"/>
<classpathentry kind="con" path="org.eclipse.jdt.junit.JUNIT_CONTAINER/4"/>
<classpathentry kind="output" path="bin"/>
</classpath>

17
.project Normal file
View File

@@ -0,0 +1,17 @@
<?xml version="1.0" encoding="UTF-8"?>
<projectDescription>
<name>DataStructures</name>
<comment></comment>
<projects>
</projects>
<buildSpec>
<buildCommand>
<name>org.eclipse.jdt.core.javabuilder</name>
<arguments>
</arguments>
</buildCommand>
</buildSpec>
<natures>
<nature>org.eclipse.jdt.core.javanature</nature>
</natures>
</projectDescription>

View File

@@ -0,0 +1,11 @@
eclipse.preferences.version=1
org.eclipse.jdt.core.compiler.codegen.inlineJsrBytecode=enabled
org.eclipse.jdt.core.compiler.codegen.targetPlatform=1.7
org.eclipse.jdt.core.compiler.codegen.unusedLocal=preserve
org.eclipse.jdt.core.compiler.compliance=1.7
org.eclipse.jdt.core.compiler.debug.lineNumber=generate
org.eclipse.jdt.core.compiler.debug.localVariable=generate
org.eclipse.jdt.core.compiler.debug.sourceFile=generate
org.eclipse.jdt.core.compiler.problem.assertIdentifier=error
org.eclipse.jdt.core.compiler.problem.enumIdentifier=error
org.eclipse.jdt.core.compiler.source=1.7

View File

@@ -0,0 +1,60 @@
eclipse.preferences.version=1
editor_save_participant_org.eclipse.jdt.ui.postsavelistener.cleanup=true
sp_cleanup.add_default_serial_version_id=true
sp_cleanup.add_generated_serial_version_id=false
sp_cleanup.add_missing_annotations=false
sp_cleanup.add_missing_deprecated_annotations=true
sp_cleanup.add_missing_methods=false
sp_cleanup.add_missing_nls_tags=false
sp_cleanup.add_missing_override_annotations=true
sp_cleanup.add_missing_override_annotations_interface_methods=true
sp_cleanup.add_serial_version_id=false
sp_cleanup.always_use_blocks=true
sp_cleanup.always_use_parentheses_in_expressions=false
sp_cleanup.always_use_this_for_non_static_field_access=false
sp_cleanup.always_use_this_for_non_static_method_access=false
sp_cleanup.convert_functional_interfaces=false
sp_cleanup.convert_to_enhanced_for_loop=false
sp_cleanup.correct_indentation=false
sp_cleanup.format_source_code=false
sp_cleanup.format_source_code_changes_only=false
sp_cleanup.insert_inferred_type_arguments=false
sp_cleanup.make_local_variable_final=true
sp_cleanup.make_parameters_final=false
sp_cleanup.make_private_fields_final=true
sp_cleanup.make_type_abstract_if_missing_method=false
sp_cleanup.make_variable_declarations_final=false
sp_cleanup.never_use_blocks=false
sp_cleanup.never_use_parentheses_in_expressions=true
sp_cleanup.on_save_use_additional_actions=true
sp_cleanup.organize_imports=false
sp_cleanup.qualify_static_field_accesses_with_declaring_class=false
sp_cleanup.qualify_static_member_accesses_through_instances_with_declaring_class=true
sp_cleanup.qualify_static_member_accesses_through_subtypes_with_declaring_class=true
sp_cleanup.qualify_static_member_accesses_with_declaring_class=false
sp_cleanup.qualify_static_method_accesses_with_declaring_class=false
sp_cleanup.remove_private_constructors=true
sp_cleanup.remove_redundant_type_arguments=true
sp_cleanup.remove_trailing_whitespaces=true
sp_cleanup.remove_trailing_whitespaces_all=true
sp_cleanup.remove_trailing_whitespaces_ignore_empty=false
sp_cleanup.remove_unnecessary_casts=false
sp_cleanup.remove_unnecessary_nls_tags=false
sp_cleanup.remove_unused_imports=false
sp_cleanup.remove_unused_local_variables=false
sp_cleanup.remove_unused_private_fields=true
sp_cleanup.remove_unused_private_members=false
sp_cleanup.remove_unused_private_methods=true
sp_cleanup.remove_unused_private_types=true
sp_cleanup.sort_members=false
sp_cleanup.sort_members_all=false
sp_cleanup.use_anonymous_class_creation=false
sp_cleanup.use_blocks=false
sp_cleanup.use_blocks_only_for_return_and_throw=false
sp_cleanup.use_lambda=true
sp_cleanup.use_parentheses_in_expressions=false
sp_cleanup.use_this_for_non_static_field_access=false
sp_cleanup.use_this_for_non_static_field_access_only_if_necessary=true
sp_cleanup.use_this_for_non_static_method_access=false
sp_cleanup.use_this_for_non_static_method_access_only_if_necessary=true
sp_cleanup.use_type_arguments=false

View File

@@ -1,2 +1,60 @@
# RedBlackNode
`RedBlackNode` is a Java implementation of red-black trees. By subclassing `RedBlackNode`, clients can add arbitrary data and augmentation information to each node. (self-balancing binary search tree, self-balancing BST, augment, augmented)
`RedBlackNode` is a Java implementation of red-black trees. By subclassing
`RedBlackNode`, clients can add arbitrary data and augmentation information to
each node. (self-balancing binary search tree, self-balancing BST, augment,
augmented)
# Features
* Supports min, max, root, predecessor, successor, insert, remove, rotate,
split, concatenate, create balanced tree, and compare operations. The running
time of each operation has optimal big O bounds.
* Supports arbitrary augmentation by overriding `augment()`. Examples of
augmentation are the number of non-leaf nodes in a subtree and the sum of the
values in a subtree.
* The parent and child links and the color are public fields. This gives
clients flexibility. However, it is possible for a client to violate the
red-black or BST properties.
* "Assert is valid" methods allow clients to check for errors in the structure
or contents of a red-black tree. This is useful for debugging.
* As a bonus (a proof of concept and a test case), this includes the `TreeList`
class, a `List` implementation backed by a red-black tree augmented by subtree
size.
* Tested in Java 6.0 and 7.0. It might also work in Java 5.0.
# Limitations:
* Augmentations that depend on information stored in a node's ancestors are not
(easily) supported. For example, augmenting each node with the number of
nodes in the left subtree is not (easily and efficiently) supported, because
in order to perform a right rotation, we would need to use the parent's
augmentation information. However, `RedBlackNode` supports augmenting each
node with the number of nodes in the subtree, which is basically equivalent.
* The running time of each operation has optimal big O bounds. However, beyond
this, no special effort has been made to optimize performance.
# Example
<pre lang="java">
/** Red-black tree augmented by the sum of the values in the subtree. */
public class SumNode extends RedBlackNode<SumNode> {
public int value;
public int sum;
public SumNode(int value) {
this.value = value;
}
@Override
public boolean augment() {
int newSum = value + left.sum + right.sum;
if (newSum == sum) {
return false;
} else {
sum = newSum;
return true;
}
}
}
</pre>
# Documentation
For more detailed instructions, check the source code to see the full API and
Javadoc documentation.

View File

@@ -0,0 +1,40 @@
package com.github.btrekkie.arbitrary_order_collection;
import java.util.Comparator;
/**
* Provides objects ordered in an arbitrary, but consistent fashion, through the createValue() method. To determine the
* relative order of two values, use ArbitraryOrderValue.compareTo. We may only compare values on which we have not
* called "remove" that were created in the same ArbitraryOrderCollection instance. Note that despite the name,
* ArbitraryOrderCollection does not implement Collection.
*/
/* We implement an ArbitraryOrderCollection using a red-black tree. We order the nodes arbitrarily.
*/
public class ArbitraryOrderCollection {
/** The Comparator for ordering ArbitraryOrderNodes. */
private static final Comparator<ArbitraryOrderNode> NODE_COMPARATOR = new Comparator<ArbitraryOrderNode>() {
@Override
public int compare(ArbitraryOrderNode node1, ArbitraryOrderNode node2) {
return 0;
}
};
/** The root node of the tree. */
private ArbitraryOrderNode root = new ArbitraryOrderNode();
/** Adds and returns a new value for ordering. */
public ArbitraryOrderValue createValue() {
ArbitraryOrderNode node = new ArbitraryOrderNode();
root = root.insert(node, true, NODE_COMPARATOR);
return new ArbitraryOrderValue(node);
}
/**
* Removes the specified value from this collection. Assumes we obtained the value by calling createValue() on this
* instance of ArbitraryOrderCollection. After calling "remove" on a value, we may no longer compare it to other
* values.
*/
public void remove(ArbitraryOrderValue value) {
root = value.node.remove();
}
}

View File

@@ -0,0 +1,8 @@
package com.github.btrekkie.arbitrary_order_collection;
import com.github.btrekkie.red_black_node.RedBlackNode;
/** A node in an ArbitraryOrderCollection tree. See ArbitraryOrderCollection. */
class ArbitraryOrderNode extends RedBlackNode<ArbitraryOrderNode> {
}

View File

@@ -0,0 +1,19 @@
package com.github.btrekkie.arbitrary_order_collection;
/**
* A value in an ArbitraryOrderCollection. To determine the relative order of two values in the same collection, call
* compareTo.
*/
public class ArbitraryOrderValue implements Comparable<ArbitraryOrderValue> {
/** The node that establishes this value's relative position. */
final ArbitraryOrderNode node;
ArbitraryOrderValue(ArbitraryOrderNode node) {
this.node = node;
}
@Override
public int compareTo(ArbitraryOrderValue other) {
return node.compareTo(other.node);
}
}

View File

@@ -0,0 +1,72 @@
package com.github.btrekkie.arbitrary_order_collection.test;
import static org.junit.Assert.assertEquals;
import static org.junit.Assert.assertTrue;
import java.util.ArrayList;
import java.util.Collections;
import java.util.List;
import org.junit.Test;
import com.github.btrekkie.arbitrary_order_collection.ArbitraryOrderCollection;
import com.github.btrekkie.arbitrary_order_collection.ArbitraryOrderValue;
public class ArbitraryOrderCollectionTest {
/** Tests ArbitraryOrderCollection. */
@Test
public void test() {
ArbitraryOrderCollection collection = new ArbitraryOrderCollection();
List<ArbitraryOrderValue> values1 = new ArrayList<ArbitraryOrderValue>(5);
ArbitraryOrderValue value = collection.createValue();
assertEquals(0, value.compareTo(value));
values1.add(value);
for (int i = 0; i < 4; i++) {
values1.add(collection.createValue());
}
Collections.sort(values1);
List<ArbitraryOrderValue> values2 = new ArrayList<ArbitraryOrderValue>(10);
for (int i = 0; i < 10; i++) {
value = collection.createValue();
values2.add(value);
}
for (int i = 0; i < 5; i++) {
collection.remove(values2.get(2 * i));
}
assertEquals(0, values1.get(0).compareTo(values1.get(0)));
assertTrue(values1.get(0).compareTo(values1.get(1)) < 0);
assertTrue(values1.get(1).compareTo(values1.get(0)) > 0);
assertTrue(values1.get(4).compareTo(values1.get(2)) > 0);
assertTrue(values1.get(0).compareTo(values1.get(4)) < 0);
collection = new ArbitraryOrderCollection();
values1 = new ArrayList<ArbitraryOrderValue>(1000);
for (int i = 0; i < 1000; i++) {
value = collection.createValue();
values1.add(value);
}
for (int i = 0; i < 500; i++) {
collection.remove(values1.get(2 * i));
}
values2 = new ArrayList<ArbitraryOrderValue>(500);
for (int i = 0; i < 500; i++) {
values2.add(values1.get(2 * i + 1));
}
for (int i = 0; i < 500; i++) {
values2.get(0).compareTo(values2.get(i));
}
Collections.sort(values2);
for (int i = 0; i < 500; i++) {
collection.createValue();
}
for (int i = 0; i < 499; i++) {
assertTrue(values2.get(i).compareTo(values2.get(i + 1)) < 0);
assertTrue(values2.get(i + 1).compareTo(values2.get(i)) > 0);
}
for (int i = 1; i < 500; i++) {
assertEquals(0, values2.get(i).compareTo(values2.get(i)));
assertTrue(values2.get(0).compareTo(values2.get(i)) < 0);
assertTrue(values2.get(i).compareTo(values2.get(0)) > 0);
}
}
}

View File

@@ -0,0 +1,60 @@
package com.github.btrekkie.interval_tree;
/**
* An interval tree data structure, which supports adding or removing an interval and finding an arbitrary interval that
* contains a specified value.
*/
/* The interval tree is ordered in ascending order of the start an interval, with ties broken by the end of the
* interval. Each node is augmented with the maximum ending value of an interval in the subtree rooted at the node.
*/
public class IntervalTree {
/** The root node of the tree. */
private IntervalTreeNode root = IntervalTreeNode.LEAF;
/** Adds the specified interval to this. */
public void addInterval(IntervalTreeInterval interval) {
root = root.insert(new IntervalTreeNode(interval), true, null);
}
/**
* Removes the specified interval from this, if it is present.
* @param interval The interval.
* @return Whether the interval was present.
*/
public boolean removeInterval(IntervalTreeInterval interval) {
IntervalTreeNode node = root;
while (!node.isLeaf()) {
if (interval.start < node.interval.start) {
node = node.left;
} else if (interval.start > node.interval.start) {
node = node.right;
} else if (interval.end < node.interval.end) {
node = node.left;
} else if (interval.end > node.interval.end) {
node = node.right;
} else {
root = node.remove();
return true;
}
}
return false;
}
/**
* Returns an aribtrary IntervalTreeInterval in this that contains the specified value. Returns null if there is no
* such interval.
*/
public IntervalTreeInterval findInterval(double value) {
IntervalTreeNode node = root;
while (!node.isLeaf()) {
if (value >= node.interval.start && value <= node.interval.end) {
return node.interval;
} else if (value <= node.left.maxEnd) {
node = node.left;
} else {
node = node.right;
}
}
return null;
}
}

View File

@@ -0,0 +1,28 @@
package com.github.btrekkie.interval_tree;
/**
* An inclusive range of values [start, end]. Two intervals are equal if they have the same starting and ending values.
*/
public class IntervalTreeInterval {
/** The smallest value in the range. */
public final double start;
/** The largest value in the range. */
public final double end;
public IntervalTreeInterval(double start, double end) {
if (start > end) {
throw new IllegalArgumentException("The end of the range must be at most the start");
}
this.start = start;
this.end = end;
}
public boolean equals(Object obj) {
if (!(obj instanceof IntervalTreeInterval)) {
return false;
}
IntervalTreeInterval interval = (IntervalTreeInterval)obj;
return start == interval.start && end == interval.end;
}
}

View File

@@ -0,0 +1,68 @@
package com.github.btrekkie.interval_tree;
import com.github.btrekkie.red_black_node.RedBlackNode;
/**
* A node in an IntervalTree. See the comments for the implementation of IntervalTree. Its compareTo method orders
* nodes as suggested in the comments for the implementation of IntervalTree.
*/
class IntervalTreeNode extends RedBlackNode<IntervalTreeNode> {
/** The dummy leaf node. */
public static final IntervalTreeNode LEAF = new IntervalTreeNode();
/** The interval stored in this node. */
public IntervalTreeInterval interval;
/** The maximum ending value of an interval in the subtree rooted at this node. */
public double maxEnd;
public IntervalTreeNode(IntervalTreeInterval interval) {
this.interval = interval;
maxEnd = interval.end;
}
/** Constructs a new dummy leaf node. */
private IntervalTreeNode() {
interval = null;
maxEnd = Double.NEGATIVE_INFINITY;
}
@Override
public boolean augment() {
double newMaxEnd = Math.max(interval.end, Math.max(left.maxEnd, right.maxEnd));
if (newMaxEnd == maxEnd) {
return false;
} else {
maxEnd = newMaxEnd;
return true;
}
}
@Override
public void assertNodeIsValid() {
double expectedMaxEnd;
if (isLeaf()) {
expectedMaxEnd = Double.NEGATIVE_INFINITY;
} else {
expectedMaxEnd = Math.max(interval.end, Math.max(left.maxEnd, right.maxEnd));
}
if (maxEnd != expectedMaxEnd) {
throw new RuntimeException("The node's maxEnd does not match that of the children");
}
}
@Override
public int compareTo(IntervalTreeNode other) {
if (interval.start != interval.end) {
return Double.compare(interval.start, other.interval.start);
} else {
return Double.compare(interval.end, other.interval.end);
}
}
@Override
public void assertSubtreeIsValid() {
super.assertSubtreeIsValid();
assertOrderIsValid(null);
}
}

View File

@@ -0,0 +1,48 @@
package com.github.btrekkie.interval_tree.test;
import static org.junit.Assert.assertEquals;
import static org.junit.Assert.assertFalse;
import static org.junit.Assert.assertNull;
import static org.junit.Assert.assertTrue;
import org.junit.Test;
import com.github.btrekkie.interval_tree.IntervalTree;
import com.github.btrekkie.interval_tree.IntervalTreeInterval;
public class IntervalTreeTest {
/** Tests IntervalTree. */
@Test
public void test() {
IntervalTree tree = new IntervalTree();
assertNull(tree.findInterval(0.5));
assertNull(tree.findInterval(-1));
tree.addInterval(new IntervalTreeInterval(5, 7));
tree.addInterval(new IntervalTreeInterval(42, 48));
tree.addInterval(new IntervalTreeInterval(-1, 2));
tree.addInterval(new IntervalTreeInterval(6, 12));
tree.addInterval(new IntervalTreeInterval(21, 23));
assertTrue(tree.removeInterval(new IntervalTreeInterval(-1, 2)));
assertFalse(tree.removeInterval(new IntervalTreeInterval(-1, 2)));
tree.addInterval(new IntervalTreeInterval(-6, -2));
assertEquals(new IntervalTreeInterval(6, 12), tree.findInterval(8));
assertNull(tree.findInterval(0));
assertEquals(new IntervalTreeInterval(21, 23), tree.findInterval(21));
assertEquals(new IntervalTreeInterval(42, 48), tree.findInterval(48));
IntervalTreeInterval interval = tree.findInterval(6.5);
assertTrue(new IntervalTreeInterval(5, 7).equals(interval) || new IntervalTreeInterval(6, 12).equals(interval));
tree = new IntervalTree();
for (int i = 0; i < 500; i++) {
tree.addInterval(new IntervalTreeInterval(2 * i, 2 * i + 1));
}
for (int i = 0; i < 250; i++) {
tree.removeInterval(new IntervalTreeInterval(4 * i + 2, 4 * i + 3));
}
assertNull(tree.findInterval(123.5));
assertEquals(new IntervalTreeInterval(124, 125), tree.findInterval(124.5));
assertEquals(new IntervalTreeInterval(776, 777), tree.findInterval(776));
assertEquals(new IntervalTreeInterval(0, 1), tree.findInterval(0.5));
assertEquals(new IntervalTreeInterval(996, 997), tree.findInterval(997));
}
}

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,28 @@
package com.github.btrekkie.red_black_node;
/**
* Wraps a value using reference equality. In other words, two references are equal only if their values are the same
* object instance, as in ==.
* @param <T> The type of value.
*/
class Reference<T> {
/** The value this wraps. */
private final T value;
public Reference(T value) {
this.value = value;
}
public boolean equals(Object obj) {
if (!(obj instanceof Reference)) {
return false;
}
Reference<?> reference = (Reference<?>)obj;
return value == reference.value;
}
@Override
public int hashCode() {
return System.identityHashCode(value);
}
}

View File

@@ -0,0 +1,171 @@
package com.github.btrekkie.red_black_node.test;
import static org.junit.Assert.assertFalse;
import static org.junit.Assert.assertTrue;
import java.util.Comparator;
import org.junit.Test;
/**
* Tests RedBlackNode. Most of the testing for RedBlackNode takes place in TreeListTest, IntervalTreeTest, and
* ArbitraryOrderCollectionTest, which test realistic use cases of RedBlackNode. TreeListTest tests most of the
* RedBlackNode methods, while IntervalTreeTest tests non-structural augmentation and the "insert" method,
* ArbitraryOrderCollectionTest tests compareTo, and RedBlackNodeTest tests assertSubtreeIsValid() and
* assertOrderIsValid.
*/
public class RedBlackNodeTest {
/**
* Returns whether the subtree rooted at the specified node is valid, as in TestRedBlackNode.assertSubtreeIsValid().
*/
private boolean isSubtreeValid(TestRedBlackNode node) {
try {
node.assertSubtreeIsValid();
return true;
} catch (RuntimeException exception) {
return false;
}
}
/**
* Returns whether the nodes in the subtree rooted at the specified node are ordered correctly, as in
* TestRedBlackNode.assertOrderIsValid.
* @param comparator A comparator indicating how the nodes should be ordered. If this is null, we use the nodes'
* natural ordering, as in TestRedBlackNode.compare.
*/
private boolean isOrderValid(TestRedBlackNode node, Comparator<TestRedBlackNode> comparator) {
try {
node.assertOrderIsValid(null);
return true;
} catch (RuntimeException exception) {
return false;
}
}
/** Tests RedBlackNode.assertSubtreeIsValid() and RedBlackNode.assertOrderIsValid. */
@Test
public void testAssertIsValid() {
// Create a perfectly balanced tree of height 3
TestRedBlackNode node0 = new TestRedBlackNode(0);
TestRedBlackNode node1 = new TestRedBlackNode(1);
TestRedBlackNode node2 = new TestRedBlackNode(2);
TestRedBlackNode node3 = new TestRedBlackNode(3);
TestRedBlackNode node4 = new TestRedBlackNode(4);
TestRedBlackNode node5 = new TestRedBlackNode(5);
TestRedBlackNode node6 = new TestRedBlackNode(6);
node0.parent = node1;
node0.left = TestRedBlackNode.LEAF;
node0.right = TestRedBlackNode.LEAF;
node1.parent = node3;
node1.left = node0;
node1.right = node2;
node1.isRed = true;
node2.parent = node1;
node2.left = TestRedBlackNode.LEAF;
node2.right = TestRedBlackNode.LEAF;
node3.left = node1;
node3.right = node5;
node4.parent = node5;
node4.left = TestRedBlackNode.LEAF;
node4.right = TestRedBlackNode.LEAF;
node5.parent = node3;
node5.left = node4;
node5.right = node6;
node5.isRed = true;
node6.parent = node5;
node6.left = TestRedBlackNode.LEAF;
node6.right = TestRedBlackNode.LEAF;
node3.left = node3;
node3.right = node3;
node3.parent = node3;
assertFalse(isSubtreeValid(node3));
node3.left = node1;
node3.right = node5;
node3.parent = null;
node0.parent = node3;
assertFalse(isSubtreeValid(node3));
node0.parent = node1;
node1.right = node0;
assertFalse(isSubtreeValid(node3));
node1.right = node2;
node5.isRed = false;
assertFalse(isSubtreeValid(node3));
assertTrue(isSubtreeValid(node5));
node5.isRed = true;
node3.isRed = true;
assertFalse(isSubtreeValid(node3));
assertTrue(isSubtreeValid(node5));
node3.isRed = false;
node0.isRed = true;
node2.isRed = true;
node4.isRed = true;
node6.isRed = true;
assertFalse(isSubtreeValid(node3));
node0.isRed = false;
node2.isRed = false;
node4.isRed = false;
node6.isRed = false;
TestRedBlackNode.LEAF.isRed = true;
assertFalse(isSubtreeValid(node3));
TestRedBlackNode.LEAF.isRed = false;
TestRedBlackNode.LEAF.isValid = false;
assertFalse(isSubtreeValid(node3));
assertFalse(isSubtreeValid(TestRedBlackNode.LEAF));
TestRedBlackNode.LEAF.isValid = true;
node1.isValid = false;
assertFalse(isSubtreeValid(node3));
node1.isValid = true;
node3.value = 2;
node2.value = 3;
assertFalse(isOrderValid(node3, null));
assertFalse(
isOrderValid(node3, new Comparator<TestRedBlackNode>() {
@Override
public int compare(TestRedBlackNode node1, TestRedBlackNode node2) {
return node1.value - node2.value;
}
}));
node3.value = 3;
node2.value = 2;
node2.value = 4;
node4.value = 2;
assertFalse(isOrderValid(node3, null));
node2.value = 2;
node4.value = 4;
node0.value = 1;
node1.value = 0;
assertFalse(isOrderValid(node3, null));
node0.value = 0;
node1.value = 1;
// Do all of the assertions for which the tree is supposed to be valid at the end, to make sure we didn't make a
// mistake undoing any of the modifications
assertTrue(isSubtreeValid(node3));
assertTrue(isSubtreeValid(node1));
assertTrue(isSubtreeValid(node0));
assertTrue(isSubtreeValid(TestRedBlackNode.LEAF));
assertTrue(isOrderValid(node3, null));
assertTrue(isOrderValid(node1, null));
assertTrue(isOrderValid(node0, null));
assertTrue(isOrderValid(TestRedBlackNode.LEAF, null));
assertTrue(
isOrderValid(node3, new Comparator<TestRedBlackNode>() {
@Override
public int compare(TestRedBlackNode node1, TestRedBlackNode node2) {
return node1.value - node2.value;
}
}));
}
}

View File

@@ -0,0 +1,36 @@
package com.github.btrekkie.red_black_node.test;
import com.github.btrekkie.red_black_node.RedBlackNode;
/** A RedBlackNode for RedBlackNodeTest. */
class TestRedBlackNode extends RedBlackNode<TestRedBlackNode> {
/** The dummy leaf node. */
public static final TestRedBlackNode LEAF = new TestRedBlackNode();
/** The value stored in this node. "value" is unspecified if this is a leaf node. */
public int value;
/** Whether this node is considered valid, as in assertNodeIsValid(). */
public boolean isValid = true;
public TestRedBlackNode(int value) {
this.value = value;
}
/** Constructs a new dummy leaf node. */
private TestRedBlackNode() {
}
@Override
public void assertNodeIsValid() {
if (!isValid) {
throw new RuntimeException("isValid is false");
}
}
@Override
public int compareTo(TestRedBlackNode other) {
return value - other.value;
}
}

View File

@@ -0,0 +1,461 @@
package com.github.btrekkie.tree_list;
import java.util.AbstractList;
import java.util.ArrayList;
import java.util.Collection;
import java.util.ConcurrentModificationException;
import java.util.Iterator;
import java.util.List;
import java.util.ListIterator;
import java.util.NoSuchElementException;
import com.github.btrekkie.red_black_node.RedBlackNode;
/**
* Implements a list using a self-balancing binary search tree augmented by subtree size. The benefit of this compared
* to ArrayList or LinkedList is that it supports both decent random access and quickly adding to or removing from the
* middle of the list. Operations have the following running times:
*
* size(): O(1)
* get, set, add, remove: O(log N)
* addAll: O(log N + P), where P is the number of elements we add
* iterator(): O(log N + P + M log N), where P is the number of elements over which we iterate and M is the number of
* elements we remove
* listIterator: O(log N + P + M log N + R log N), where P is the number of times we iterate over or set an element, M
* is the number of elements we add or remove, and R is the number of times we change the direction of iteration
* clear(): O(1), excluding garbage collection
* subList.clear(): O(log N), excluding garbage collection
* Constructor: O(N)
*
* This class is similar to an Apache Commons Collections class by the same name. I speculate that the Apache class is
* faster than this (by a constant factor) for most operations. However, this class's implementations of addAll and
* subList.clear() are asymptotically faster than the Apache class's implementations.
*/
public class TreeList<T> extends AbstractList<T> {
/** The dummy leaf node. */
private final TreeListNode<T> leaf = new TreeListNode<T>(null);
/** The root node of the tree. */
private TreeListNode<T> root;
/** Constructs a new empty TreeList. */
public TreeList() {
root = leaf;
}
/** Constructs a new TreeList containing the specified values, in iteration order. */
public TreeList(Collection<? extends T> values) {
root = createTree(values);
}
/** Returns the root of a perfectly height-balanced tree containing the specified values, in iteration order. */
private TreeListNode<T> createTree(Collection<? extends T> values) {
List<TreeListNode<T>> nodes = new ArrayList<TreeListNode<T>>(values.size());
for (T value : values) {
nodes.add(new TreeListNode<T>(value));
}
return RedBlackNode.<TreeListNode<T>>createTree(nodes, leaf);
}
/**
* Returns the node for get(index). Raises an IndexOutOfBoundsException if "index" is not in the range [0, size()).
*/
private TreeListNode<T> getNode(int index) {
if (index < 0 || index >= root.size) {
throw new IndexOutOfBoundsException("Index " + index + " is not in the range [0, " + root.size + ")");
}
int rank = index;
TreeListNode<T> node = root;
while (rank != node.left.size) {
if (rank < node.left.size) {
node = node.left;
} else {
rank -= node.left.size + 1;
node = node.right;
}
}
return node;
}
@Override
public T get(int index) {
return getNode(index).value;
}
@Override
public int size() {
return root.size;
}
@Override
public boolean isEmpty() {
return root == leaf;
}
@Override
public T set(int index, T value) {
modCount++;
TreeListNode<T> node = getNode(index);
T oldValue = node.value;
node.value = value;
return oldValue;
}
@Override
public void add(int index, T value) {
if (index < 0 || index > root.size) {
throw new IndexOutOfBoundsException("Index " + index + " is not in the range [0, " + root.size + "]");
}
modCount++;
TreeListNode<T> newNode = new TreeListNode<T>(value);
newNode.left = leaf;
newNode.right = leaf;
if (root.isLeaf()) {
root = newNode;
newNode.isRed = false;
return;
}
newNode.isRed = true;
if (index < root.size) {
TreeListNode<T> node = getNode(index);
if (node.left.isLeaf()) {
node.left = newNode;
newNode.parent = node;
} else {
node = node.predecessor();
node.right = newNode;
newNode.parent = node;
}
} else {
TreeListNode<T> node;
node = root.max();
node.right = newNode;
newNode.parent = node;
}
newNode.fixInsertion();
while (root.parent != null) {
root = root.parent;
}
}
@Override
public T remove(int index) {
TreeListNode<T> node = getNode(index);
modCount++;
T value = node.value;
root = node.remove();
return value;
}
@Override
public boolean addAll(int index, Collection<? extends T> values) {
if (index < 0 || index > root.size) {
throw new IndexOutOfBoundsException("Index " + index + " is not in the range [0, " + root.size + "]");
}
modCount++;
if (values.isEmpty()) {
return false;
} else {
if (index >= root.size) {
root = root.concatenate(createTree(values));
} else {
TreeListNode<T>[] split = root.split(getNode(index));
root = split[0].concatenate(createTree(values)).concatenate(split[1]);
}
return true;
}
}
@Override
public boolean addAll(Collection<? extends T> values) {
modCount++;
if (values.isEmpty()) {
return false;
} else {
root = root.concatenate(createTree(values));
return true;
}
}
@Override
protected void removeRange(int startIndex, int endIndex) {
if (startIndex != endIndex) {
modCount++;
TreeListNode<T> last;
if (endIndex == root.size) {
last = leaf;
} else {
TreeListNode<T>[] split = root.split(getNode(endIndex));
root = split[0];
last = split[1];
}
TreeListNode<T> first = root.split(getNode(startIndex))[0];
root = first.concatenate(last);
}
}
@Override
public void clear() {
modCount++;
root = leaf;
}
/** The class for TreeList.iterator(). */
private class TreeListIterator implements Iterator<T> {
/** The value of TreeList.this.modCount we require to continue iteration without concurrent modification. */
private int modCount = TreeList.this.modCount;
/**
* The node containing the last element next() returned. This is null if we have yet to call next() or we have
* called remove() since the last call to next().
*/
private TreeListNode<T> node;
/** The node containing next(). This is null if we have reached the end of the list. */
private TreeListNode<T> nextNode;
/** Whether we have (successfully) called next(). */
private boolean haveCalledNext;
private TreeListIterator() {
if (root.isLeaf()) {
nextNode = null;
} else {
nextNode = root.min();
}
}
@Override
public boolean hasNext() {
return nextNode != null;
}
@Override
public T next() {
if (nextNode == null) {
throw new NoSuchElementException("Reached the end of the list");
} else if (TreeList.this.modCount != modCount) {
throw new ConcurrentModificationException();
}
haveCalledNext = true;
node = nextNode;
nextNode = nextNode.successor();
return node.value;
}
@Override
public void remove() {
if (node == null) {
if (!haveCalledNext) {
throw new IllegalStateException("Must call next() before calling remove()");
} else {
throw new IllegalStateException("Already removed this element");
}
} else if (TreeList.this.modCount != modCount) {
throw new ConcurrentModificationException();
}
root = node.remove();
node = null;
TreeList.this.modCount++;
modCount = TreeList.this.modCount;
}
}
@Override
public Iterator<T> iterator() {
return new TreeListIterator();
}
/** The class for TreeList.listIterator. */
private class TreeListListIterator implements ListIterator<T> {
/** The value of TreeList.this.modCount we require to continue iteration without concurrent modification. */
private int modCount = TreeList.this.modCount;
/** The current return value for nextIndex(). */
private int nextIndex;
/** The node for next(), or null if hasNext() is false. */
private TreeListNode<T> nextNode;
/** The node for previous(), or null if hasPrevious() is false. */
private TreeListNode<T> prevNode;
/** Whether we have called next() or previous(). */
private boolean haveCalledNextOrPrevious;
/** Whether we (successfully) called next() more recently than previous(). */
private boolean justCalledNext;
/**
* Whether we have (successfully) called remove() or "add" since the last (successful) call to next() or
* previous().
*/
private boolean haveModified;
/**
* Constructs a new TreeListListIterator.
* @param index The starting index, as in the "index" argument to listIterator. This method assumes that
* 0 <= index < root.size.
*/
private TreeListListIterator(int index) {
nextIndex = index;
if (index > 0) {
prevNode = getNode(index - 1);
nextNode = prevNode.successor();
} else {
prevNode = null;
if (root.size > 0) {
nextNode = root.min();
} else {
nextNode = null;
}
}
}
@Override
public boolean hasNext() {
if (modCount != TreeList.this.modCount) {
throw new ConcurrentModificationException();
}
return nextNode != null;
}
@Override
public T next() {
if (nextNode == null) {
throw new NoSuchElementException("Reached the end of the list");
} else if (modCount != TreeList.this.modCount) {
throw new ConcurrentModificationException();
}
haveCalledNextOrPrevious = true;
justCalledNext = true;
haveModified = false;
nextIndex++;
prevNode = nextNode;
nextNode = nextNode.successor();
return prevNode.value;
}
@Override
public int nextIndex() {
if (modCount != TreeList.this.modCount) {
throw new ConcurrentModificationException();
}
return nextIndex;
}
@Override
public boolean hasPrevious() {
if (modCount != TreeList.this.modCount) {
throw new ConcurrentModificationException();
}
return prevNode != null;
}
@Override
public T previous() {
if (prevNode == null) {
throw new NoSuchElementException("Reached the beginning of the list");
} else if (modCount != TreeList.this.modCount) {
throw new ConcurrentModificationException();
}
haveCalledNextOrPrevious = true;
justCalledNext = false;
haveModified = false;
nextIndex--;
nextNode = prevNode;
prevNode = prevNode.predecessor();
return nextNode.value;
}
@Override
public int previousIndex() {
return nextIndex - 1;
}
@Override
public void set(T value) {
if (!haveCalledNextOrPrevious) {
throw new IllegalStateException("Must call next() or previous() before calling \"set\"");
} else if (haveModified) {
throw new IllegalStateException("Already modified the list at this position");
} else if (modCount != TreeList.this.modCount) {
throw new ConcurrentModificationException();
}
if (justCalledNext) {
prevNode.value = value;
} else {
nextNode.value = value;
}
TreeList.this.modCount++;
modCount = TreeList.this.modCount;
}
@Override
public void add(T value) {
if (haveModified) {
throw new IllegalStateException("Already modified the list at this position");
} else if (modCount != TreeList.this.modCount) {
throw new ConcurrentModificationException();
}
// Create the new node
TreeListNode<T> newNode = new TreeListNode<T>(value);;
newNode.left = leaf;
newNode.right = leaf;
newNode.isRed = true;
// Insert newNode. There is guaranteed to be a leaf child of prevNode or nextNode where we can insert it.
if (nextNode != null && nextNode.left.isLeaf()) {
nextNode.left = newNode;
newNode.parent = nextNode;
} else if (prevNode != null) {
prevNode.right = newNode;
newNode.parent = prevNode;
} else {
root = newNode;
}
prevNode = newNode;
newNode.fixInsertion();
nextIndex++;
haveModified = true;
TreeList.this.modCount++;
modCount = TreeList.this.modCount;
}
@Override
public void remove() {
if (!haveCalledNextOrPrevious) {
throw new IllegalStateException("Must call next() or previous() before calling remove()");
} else if (haveModified) {
throw new IllegalStateException("Already modified the list at this position");
} else if (modCount != TreeList.this.modCount) {
throw new ConcurrentModificationException();
}
if (justCalledNext) {
TreeListNode<T> predecessor = prevNode.predecessor();
root = prevNode.remove();
prevNode = predecessor;
} else {
TreeListNode<T> successor = nextNode.successor();
root = nextNode.remove();
nextNode = successor;
}
haveModified = true;
TreeList.this.modCount++;
modCount = TreeList.this.modCount;
}
}
@Override
public ListIterator<T> listIterator(int index) {
if (index < 0 || index > root.size) {
throw new IndexOutOfBoundsException("Index " + index + " is not in the range [0, " + root.size + "]");
}
return new TreeListListIterator(index);
}
}

View File

@@ -0,0 +1,40 @@
package com.github.btrekkie.tree_list;
import com.github.btrekkie.red_black_node.RedBlackNode;
/** A node in a TreeList. See the comments for TreeList. */
class TreeListNode<T> extends RedBlackNode<TreeListNode<T>> {
/** The element stored in the node. The value is unspecified if this is a leaf node. */
public T value;
/** The number of elements in the subtree rooted at this node, not counting leaf nodes, as in TreeList.leaf. */
public int size;
public TreeListNode(T value) {
this.value = value;
}
@Override
public boolean augment() {
int newSize = left.size + right.size + 1;
if (newSize == size) {
return false;
} else {
size = newSize;
return true;
}
}
@Override
public void assertNodeIsValid() {
int expectedSize;
if (isLeaf()) {
expectedSize = 0;
} else {
expectedSize = left.size + right.size + 1;
}
if (size != expectedSize) {
throw new RuntimeException("The node's size does not match that of the children");
}
}
}

View File

@@ -0,0 +1,551 @@
package com.github.btrekkie.tree_list.test;
import static org.junit.Assert.assertEquals;
import static org.junit.Assert.assertFalse;
import static org.junit.Assert.assertTrue;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.Iterator;
import java.util.List;
import java.util.ListIterator;
import java.util.NoSuchElementException;
import org.junit.Test;
import com.github.btrekkie.tree_list.TreeList;
public class TreeListTest {
/** Tests TreeList.add. */
@Test
public void testAdd() {
List<Integer> list = new TreeList<Integer>();
assertEquals(Collections.emptyList(), list);
assertEquals(0, list.size());
assertTrue(list.isEmpty());
list.add(4);
list.add(17);
list.add(-4);
list.add(null);
assertEquals(Arrays.asList(4, 17, -4, null), list);
assertEquals(4, list.size());
assertFalse(list.isEmpty());
assertEquals(-4, list.get(2).intValue());
boolean threwException;
try {
list.get(-3);
threwException = false;
} catch (IndexOutOfBoundsException exception) {
threwException = true;
}
assertTrue(threwException);
try {
list.get(9);
threwException = false;
} catch (IndexOutOfBoundsException exception) {
threwException = true;
}
assertTrue(threwException);
try {
list.add(-3, 5);
threwException = false;
} catch (IndexOutOfBoundsException exception) {
threwException = true;
}
assertTrue(threwException);
try {
list.add(9, 10);
threwException = false;
} catch (IndexOutOfBoundsException exception) {
threwException = true;
}
assertTrue(threwException);
list.add(1, 6);
list.add(0, -1);
list.add(6, 42);
assertEquals(Arrays.asList(-1, 4, 6, 17, -4, null, 42), list);
assertEquals(7, list.size());
assertEquals(6, list.get(2).intValue());
assertEquals(null, list.get(5));
list = new TreeList<Integer>();
for (int i = 0; i < 200; i++) {
list.add(i + 300);
}
for (int i = 0; i < 300; i++) {
list.add(i, i);
}
for (int i = 499; i >= 0; i--) {
list.add(500, i + 500);
}
List<Integer> expected = new ArrayList<Integer>(1000);
for (int i = 0; i < 1000; i++) {
expected.add(i);
}
assertEquals(expected, list);
assertEquals(1000, list.size());
assertFalse(list.isEmpty());
assertEquals(777, list.get(777).intValue());
assertEquals(123, list.get(123).intValue());
assertEquals(0, list.get(0).intValue());
assertEquals(999, list.get(999).intValue());
}
/** Tests TreeList.remove. */
@Test
public void testRemove() {
List<Integer> list = new TreeList<Integer>();
list.add(17);
list.add(-5);
list.add(null);
list.add(0);
list.add(1, 16);
assertEquals(null, list.remove(3));
assertEquals(17, list.remove(0).intValue());
assertEquals(0, list.remove(2).intValue());
assertEquals(Arrays.asList(16, -5), list);
assertEquals(2, list.size());
assertFalse(list.isEmpty());
assertEquals(16, list.get(0).intValue());
assertEquals(-5, list.get(1).intValue());
boolean threwException;
try {
list.remove(-3);
threwException = false;
} catch (IndexOutOfBoundsException exception) {
threwException = true;
}
assertTrue(threwException);
try {
list.remove(9);
threwException = false;
} catch (IndexOutOfBoundsException exception) {
threwException = true;
}
assertTrue(threwException);
list = new TreeList<Integer>();
for (int i = 0; i < 1000; i++) {
list.add(i);
}
for (int i = 0; i < 250; i++) {
assertEquals(2 * i + 501, list.remove(501).intValue());
assertEquals(2 * i + 1, list.remove(i + 1).intValue());
}
List<Integer> expected = new ArrayList<Integer>(500);
for (int i = 0; i < 500; i++) {
expected.add(2 * i);
}
assertEquals(expected, list);
assertEquals(500, list.size());
assertFalse(list.isEmpty());
assertEquals(0, list.get(0).intValue());
assertEquals(998, list.get(499).intValue());
assertEquals(84, list.get(42).intValue());
assertEquals(602, list.get(301).intValue());
}
/** Tests TreeList.set.*/
@Test
public void testSet() {
List<Integer> list = new TreeList<Integer>();
list.addAll(Arrays.asList(5, 17, 42, -6, null, 3, null));
list.set(3, 12);
list.set(0, 6);
list.set(6, 88);
boolean threwException;
try {
list.set(7, 2);
threwException = false;
} catch (IndexOutOfBoundsException exception) {
threwException = true;
}
assertTrue(threwException);
try {
list.set(-1, 4);
threwException = false;
} catch (IndexOutOfBoundsException exception) {
threwException = true;
}
assertTrue(threwException);
assertEquals(Arrays.asList(6, 17, 42, 12, null, 3, 88), list);
assertEquals(7, list.size());
assertFalse(list.isEmpty());
assertEquals(42, list.get(2).intValue());
assertEquals(6, list.get(0).intValue());
assertEquals(88, list.get(6).intValue());
list = new TreeList<Integer>();
for (int i = 0; i < 1000; i++) {
list.add(999 - i);
}
for (int i = 0; i < 500; i++) {
list.set(i, i);
list.set(i + 500, i + 500);
}
List<Integer> expected = new ArrayList<Integer>(1000);
for (int i = 0; i < 1000; i++) {
expected.add(i);
}
assertEquals(expected, list);
assertEquals(1000, list.size());
assertFalse(list.isEmpty());
assertEquals(123, list.get(123).intValue());
assertEquals(777, list.get(777).intValue());
assertEquals(0, list.get(0).intValue());
assertEquals(999, list.get(999).intValue());
}
/** Tests TreeList.addAll. */
@Test
public void testAddAll() {
List<Integer> list = new TreeList<Integer>();
list.add(3);
list.add(42);
list.add(16);
list.addAll(0, Arrays.asList(15, 4, -1));
list.addAll(2, Arrays.asList(6, 14));
list.addAll(1, Collections.<Integer>emptyList());
list.addAll(8, Arrays.asList(null, 7));
list.addAll(Arrays.asList(-5, 5));
assertEquals(Arrays.asList(15, 4, 6, 14, -1, 3, 42, 16, null, 7, -5, 5), list);
assertEquals(12, list.size());
assertFalse(list.isEmpty());
assertEquals(14, list.get(3).intValue());
assertEquals(15, list.get(0).intValue());
assertEquals(5, list.get(11).intValue());
list = new TreeList<Integer>();
List<Integer> list2 = new ArrayList<Integer>(400);
for (int i = 0; i < 200; i++) {
list2.add(i + 100);
}
for (int i = 0; i < 200; i++) {
list2.add(i + 700);
}
list.addAll(list2);
list2.clear();
for (int i = 0; i < 100; i++) {
list2.add(i);
}
list.addAll(0, list2);
list2.clear();
for (int i = 0; i < 400; i++) {
list2.add(i + 300);
}
list.addAll(300, list2);
list2.clear();
for (int i = 0; i < 100; i++) {
list2.add(i + 900);
}
list.addAll(900, list2);
List<Integer> expected = new ArrayList<Integer>(1000);
for (int i = 0; i < 1000; i++) {
expected.add(i);
}
assertEquals(expected, list);
assertEquals(1000, list.size());
assertFalse(list.isEmpty());
assertEquals(123, list.get(123).intValue());
assertEquals(777, list.get(777).intValue());
assertEquals(0, list.get(0).intValue());
assertEquals(999, list.get(999).intValue());
}
/** Tests TreeList.subList.clear(). */
@Test
public void testClearSubList() {
List<Integer> list = new TreeList<Integer>();
list.addAll(Arrays.asList(6, 42, -3, 15, 7, 99, 6, 12));
list.subList(2, 4).clear();
list.subList(0, 1).clear();
list.subList(4, 4).clear();
list.subList(3, 5).clear();
assertEquals(Arrays.asList(42, 7, 99), list);
assertEquals(3, list.size());
assertFalse(list.isEmpty());
assertEquals(42, list.get(0).intValue());
assertEquals(7, list.get(1).intValue());
assertEquals(99, list.get(2).intValue());
list = new TreeList<Integer>();
for (int i = 0; i < 200; i++) {
list.add(-1);
}
for (int i = 0; i < 500; i++) {
list.add(i);
}
for (int i = 0; i < 400; i++) {
list.add(-1);
}
for (int i = 0; i < 500; i++) {
list.add(i + 500);
}
for (int i = 0; i < 600; i++) {
list.add(-1);
}
list.subList(1600, 2200).clear();
list.subList(777, 777).clear();
list.subList(700, 1100).clear();
list.subList(0, 200).clear();
List<Integer> expected = new ArrayList<Integer>(1000);
for (int i = 0; i < 1000; i++) {
expected.add(i);
}
assertEquals(expected, list);
assertEquals(1000, list.size());
assertFalse(list.isEmpty());
assertEquals(123, list.get(123).intValue());
assertEquals(777, list.get(777).intValue());
assertEquals(0, list.get(0).intValue());
assertEquals(999, list.get(999).intValue());
list = new TreeList<Integer>();
list.addAll(Arrays.asList(-3, null, 8, 14, 9, 42));
list.subList(0, 6).clear();
assertEquals(Collections.emptyList(), list);
assertEquals(0, list.size());
assertTrue(list.isEmpty());
}
/** Tests TreeList(Collection). */
@Test
public void testConstructor() {
List<Integer> list = new TreeList<Integer>(Arrays.asList(1, 5, 42, -6, null, 3));
assertEquals(Arrays.asList(1, 5, 42, -6, null, 3), list);
assertEquals(6, list.size());
assertFalse(list.isEmpty());
assertEquals(42, list.get(2).intValue());
assertEquals(1, list.get(0).intValue());
assertEquals(3, list.get(5).intValue());
List<Integer> expected = new ArrayList<Integer>(1000);
for (int i = 0; i < 1000; i++) {
expected.add(i);
}
list = new TreeList<Integer>(expected);
assertEquals(expected, list);
assertEquals(1000, list.size());
assertFalse(list.isEmpty());
assertEquals(123, list.get(123).intValue());
assertEquals(777, list.get(777).intValue());
assertEquals(0, list.get(0).intValue());
assertEquals(999, list.get(999).intValue());
}
/** Tests TreeList.clear(). */
@Test
public void testClear() {
List<Integer> list = new TreeList<Integer>();
list.addAll(Arrays.asList(7, 16, 5, 42));
list.clear();
assertEquals(Collections.emptyList(), list);
assertEquals(0, list.size());
assertTrue(list.isEmpty());
for (int i = 0; i < 1000; i++) {
list.add(i);
}
list.clear();
assertEquals(Collections.emptyList(), list);
assertEquals(0, list.size());
assertTrue(list.isEmpty());
}
/** Tests TreeList.iterator(). */
@Test
public void testIterator() {
List<Integer> list = new TreeList<Integer>();
Iterator<Integer> iterator = list.iterator();
assertFalse(iterator.hasNext());
boolean threwException;
try {
iterator.next();
threwException = false;
} catch (NoSuchElementException exception) {
threwException = true;
}
assertTrue(threwException);
list = new TreeList<Integer>(Arrays.asList(42, 16, null, 7, 8, 3, 12));
iterator = list.iterator();
try {
iterator.remove();
threwException = false;
} catch (IllegalStateException exception) {
threwException = true;
}
assertTrue(threwException);
assertTrue(iterator.hasNext());
assertEquals(42, iterator.next().intValue());
assertEquals(16, iterator.next().intValue());
assertEquals(null, iterator.next());
assertTrue(iterator.hasNext());
assertEquals(7, iterator.next().intValue());
iterator.remove();
try {
iterator.remove();
threwException = false;
} catch (IllegalStateException exception) {
threwException = true;
}
assertTrue(threwException);
assertTrue(iterator.hasNext());
assertTrue(iterator.hasNext());
assertEquals(8, iterator.next().intValue());
assertTrue(iterator.hasNext());
assertEquals(3, iterator.next().intValue());
assertTrue(iterator.hasNext());
assertEquals(12, iterator.next().intValue());
assertFalse(iterator.hasNext());
iterator.remove();
assertFalse(iterator.hasNext());
try {
iterator.next();
threwException = false;
} catch (NoSuchElementException exception) {
threwException = true;
}
assertTrue(threwException);
assertEquals(Arrays.asList(42, 16, null, 8, 3), list);
list = new TreeList<Integer>();
for (int i = 0; i < 1000; i++) {
list.add(i);
}
iterator = list.iterator();
for (int i = 0; i < 500; i++) {
assertTrue(iterator.hasNext());
assertEquals(2 * i, iterator.next().intValue());
assertTrue(iterator.hasNext());
assertEquals(2 * i + 1, iterator.next().intValue());
iterator.remove();
}
assertFalse(iterator.hasNext());
List<Integer> expected = new ArrayList<Integer>(500);
for (int i = 0; i < 500; i++) {
expected.add(2 * i);
}
assertEquals(expected, list);
}
/** Tests TreeList.listIterator. */
@Test
public void testListIterator() {
List<Integer> list = new TreeList<Integer>();
list.addAll(Arrays.asList(7, 16, 42, -3, 12, 25, 8, 9));
boolean threwException;
try {
list.listIterator(-1);
threwException = false;
} catch (IndexOutOfBoundsException exception) {
threwException = true;
}
assertTrue(threwException);
try {
list.listIterator(18);
threwException = false;
} catch (IndexOutOfBoundsException exception) {
threwException = true;
}
assertTrue(threwException);
ListIterator<Integer> iterator = list.listIterator(1);
assertTrue(iterator.hasNext());
assertTrue(iterator.hasPrevious());
assertEquals(16, iterator.next().intValue());
iterator.add(6);
try {
iterator.set(-1);
threwException = false;
} catch (IllegalStateException exception) {
threwException = true;
}
assertTrue(threwException);
try {
iterator.add(9);
threwException = false;
} catch (IllegalStateException exception) {
threwException = true;
}
assertTrue(threwException);
try {
iterator.remove();
threwException = false;
} catch (IllegalStateException exception) {
threwException = true;
}
assertTrue(threwException);
assertEquals(6, iterator.previous().intValue());
assertEquals(6, iterator.next().intValue());
assertEquals(2, iterator.previousIndex());
assertEquals(3, iterator.nextIndex());
assertEquals(42, iterator.next().intValue());
assertEquals(-3, iterator.next().intValue());
assertEquals(12, iterator.next().intValue());
iterator.remove();
assertEquals(-3, iterator.previous().intValue());
iterator.remove();
assertEquals(25, iterator.next().intValue());
iterator.set(14);
assertEquals(8, iterator.next().intValue());
assertEquals(9, iterator.next().intValue());
assertFalse(iterator.hasNext());
try {
iterator.next();
threwException = false;
} catch (NoSuchElementException exception) {
threwException = true;
}
assertTrue(threwException);
assertEquals(9, iterator.previous().intValue());
iterator.set(10);
assertEquals(Arrays.asList(7, 16, 6, 42, 14, 8, 10), list);
assertEquals(7, list.size());
assertFalse(list.isEmpty());
assertEquals(42, list.get(3).intValue());
assertEquals(7, list.get(0).intValue());
assertEquals(10, list.get(6).intValue());
list = new TreeList<Integer>();
for (int i = 0; i < 1000; i++) {
list.add(-1);
}
iterator = list.listIterator();
for (int i = 0; i < 500; i++) {
iterator.add(i);
iterator.next();
}
for (int i = 0; i < 500; i++) {
iterator.previous();
iterator.remove();
iterator.previous();
}
iterator = list.listIterator(500);
for (int i = 0; i < 250; i++) {
iterator.next();
iterator.set(2 * i + 500);
iterator.next();
}
for (int i = 0; i < 250; i++) {
iterator.previous();
iterator.set(999 - 2 * i);
iterator.previous();
}
List<Integer> expected = new ArrayList<Integer>(1000);
for (int i = 0; i < 1000; i++) {
expected.add(i);
}
assertEquals(expected, list);
assertEquals(1000, list.size());
assertFalse(list.isEmpty());
assertEquals(123, list.get(123).intValue());
assertEquals(777, list.get(777).intValue());
assertEquals(0, list.get(0).intValue());
assertEquals(999, list.get(999).intValue());
}
}