/* * Copyright (c) Contributors * See CONTRIBUTORS.TXT for a full list of copyright holders. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of the OpenSimulator Project nor the * names of its contributors may be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE DEVELOPERS ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE CONTRIBUTORS BE LIABLE FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ using System; using System.Collections.Generic; using System.IO; namespace LibreMetaverse.PrimMesher { public struct Quat { /// X value public float X; /// Y value public float Y; /// Z value public float Z; /// W value public float W; public Quat(float x, float y, float z, float w) { X = x; Y = y; Z = z; W = w; } public Quat(Coord axis, float angle) { axis = axis.Normalize(); angle *= 0.5f; var c = (float) Math.Cos(angle); var s = (float) Math.Sin(angle); X = axis.X * s; Y = axis.Y * s; Z = axis.Z * s; W = c; Normalize(); } public float Length() { return (float) Math.Sqrt(X * X + Y * Y + Z * Z + W * W); } public Quat Normalize() { const float MAG_THRESHOLD = 0.0000001f; var mag = Length(); // Catch very small rounding errors when normalizing if (mag > MAG_THRESHOLD) { var oomag = 1f / mag; X *= oomag; Y *= oomag; Z *= oomag; W *= oomag; } else { X = 0f; Y = 0f; Z = 0f; W = 1f; } return this; } public static Quat operator *(Quat q1, Quat q2) { var x = q1.W * q2.X + q1.X * q2.W + q1.Y * q2.Z - q1.Z * q2.Y; var y = q1.W * q2.Y - q1.X * q2.Z + q1.Y * q2.W + q1.Z * q2.X; var z = q1.W * q2.Z + q1.X * q2.Y - q1.Y * q2.X + q1.Z * q2.W; var w = q1.W * q2.W - q1.X * q2.X - q1.Y * q2.Y - q1.Z * q2.Z; return new Quat(x, y, z, w); } public override string ToString() { return "< X: " + X + ", Y: " + Y + ", Z: " + Z + ", W: " + W + ">"; } } public struct Coord { public float X; public float Y; public float Z; public Coord(float x, float y, float z) { X = x; Y = y; Z = z; } public float Length() { return (float) Math.Sqrt(X * X + Y * Y + Z * Z); } public Coord Invert() { X = -X; Y = -Y; Z = -Z; return this; } public Coord Normalize() { const float MAG_THRESHOLD = 0.0000001f; var mag = Length(); // Catch very small rounding errors when normalizing if (mag > MAG_THRESHOLD) { var oomag = 1.0f / mag; X *= oomag; Y *= oomag; Z *= oomag; } else { X = 0.0f; Y = 0.0f; Z = 0.0f; } return this; } public override string ToString() { return X + " " + Y + " " + Z; } public static Coord Cross(Coord c1, Coord c2) { return new Coord( c1.Y * c2.Z - c2.Y * c1.Z, c1.Z * c2.X - c2.Z * c1.X, c1.X * c2.Y - c2.X * c1.Y ); } public static Coord operator +(Coord v, Coord a) { return new Coord(v.X + a.X, v.Y + a.Y, v.Z + a.Z); } public static Coord operator *(Coord v, Coord m) { return new Coord(v.X * m.X, v.Y * m.Y, v.Z * m.Z); } public static Coord operator *(Coord v, Quat q) { // From http://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions/transforms/ var c2 = new Coord(0.0f, 0.0f, 0.0f); c2.X = q.W * q.W * v.X + 2f * q.Y * q.W * v.Z - 2f * q.Z * q.W * v.Y + q.X * q.X * v.X + 2f * q.Y * q.X * v.Y + 2f * q.Z * q.X * v.Z - q.Z * q.Z * v.X - q.Y * q.Y * v.X; c2.Y = 2f * q.X * q.Y * v.X + q.Y * q.Y * v.Y + 2f * q.Z * q.Y * v.Z + 2f * q.W * q.Z * v.X - q.Z * q.Z * v.Y + q.W * q.W * v.Y - 2f * q.X * q.W * v.Z - q.X * q.X * v.Y; c2.Z = 2f * q.X * q.Z * v.X + 2f * q.Y * q.Z * v.Y + q.Z * q.Z * v.Z - 2f * q.W * q.Y * v.X - q.Y * q.Y * v.Z + 2f * q.W * q.X * v.Y - q.X * q.X * v.Z + q.W * q.W * v.Z; return c2; } } public struct UVCoord { public float U; public float V; public UVCoord(float u, float v) { U = u; V = v; } public UVCoord Flip() { U = 1.0f - U; V = 1.0f - V; return this; } } public struct Face { public int primFace; // vertices public int v1; public int v2; public int v3; //normals public int n1; public int n2; public int n3; // uvs public int uv1; public int uv2; public int uv3; public Face(int v1, int v2, int v3) { primFace = 0; this.v1 = v1; this.v2 = v2; this.v3 = v3; n1 = 0; n2 = 0; n3 = 0; uv1 = 0; uv2 = 0; uv3 = 0; } public Face(int v1, int v2, int v3, int n1, int n2, int n3) { primFace = 0; this.v1 = v1; this.v2 = v2; this.v3 = v3; this.n1 = n1; this.n2 = n2; this.n3 = n3; uv1 = 0; uv2 = 0; uv3 = 0; } public Coord SurfaceNormal(List coordList) { var c1 = coordList[v1]; var c2 = coordList[v2]; var c3 = coordList[v3]; var edge1 = new Coord(c2.X - c1.X, c2.Y - c1.Y, c2.Z - c1.Z); var edge2 = new Coord(c3.X - c1.X, c3.Y - c1.Y, c3.Z - c1.Z); return Coord.Cross(edge1, edge2).Normalize(); } } public struct ViewerFace { public int primFaceNumber; public Coord v1; public Coord v2; public Coord v3; public int coordIndex1; public int coordIndex2; public int coordIndex3; public Coord n1; public Coord n2; public Coord n3; public UVCoord uv1; public UVCoord uv2; public UVCoord uv3; public ViewerFace(int primFaceNumber) { this.primFaceNumber = primFaceNumber; v1 = new Coord(); v2 = new Coord(); v3 = new Coord(); coordIndex1 = coordIndex2 = coordIndex3 = -1; // -1 means not assigned yet n1 = new Coord(); n2 = new Coord(); n3 = new Coord(); uv1 = new UVCoord(); uv2 = new UVCoord(); uv3 = new UVCoord(); } public void Scale(float x, float y, float z) { v1.X *= x; v1.Y *= y; v1.Z *= z; v2.X *= x; v2.Y *= y; v2.Z *= z; v3.X *= x; v3.Y *= y; v3.Z *= z; } public void AddPos(float x, float y, float z) { v1.X += x; v2.X += x; v3.X += x; v1.Y += y; v2.Y += y; v3.Y += y; v1.Z += z; v2.Z += z; v3.Z += z; } public void AddRot(Quat q) { v1 *= q; v2 *= q; v3 *= q; n1 *= q; n2 *= q; n3 *= q; } public void CalcSurfaceNormal() { var edge1 = new Coord(v2.X - v1.X, v2.Y - v1.Y, v2.Z - v1.Z); var edge2 = new Coord(v3.X - v1.X, v3.Y - v1.Y, v3.Z - v1.Z); n1 = n2 = n3 = Coord.Cross(edge1, edge2).Normalize(); } } internal struct Angle { internal float angle; internal float X; internal float Y; internal Angle(float angle, float x, float y) { this.angle = angle; X = x; Y = y; } } internal class AngleList { private static readonly Angle[] angles3 = { new Angle(0.0f, 1.0f, 0.0f), new Angle(0.33333333333333333f, -0.5f, 0.86602540378443871f), new Angle(0.66666666666666667f, -0.5f, -0.86602540378443837f), new Angle(1.0f, 1.0f, 0.0f) }; private static readonly Coord[] normals3 = { new Coord(0.25f, 0.4330127019f, 0.0f).Normalize(), new Coord(-0.5f, 0.0f, 0.0f).Normalize(), new Coord(0.25f, -0.4330127019f, 0.0f).Normalize(), new Coord(0.25f, 0.4330127019f, 0.0f).Normalize() }; private static readonly Angle[] angles4 = { new Angle(0.0f, 1.0f, 0.0f), new Angle(0.25f, 0.0f, 1.0f), new Angle(0.5f, -1.0f, 0.0f), new Angle(0.75f, 0.0f, -1.0f), new Angle(1.0f, 1.0f, 0.0f) }; private static readonly Coord[] normals4 = { new Coord(0.5f, 0.5f, 0.0f).Normalize(), new Coord(-0.5f, 0.5f, 0.0f).Normalize(), new Coord(-0.5f, -0.5f, 0.0f).Normalize(), new Coord(0.5f, -0.5f, 0.0f).Normalize(), new Coord(0.5f, 0.5f, 0.0f).Normalize() }; private static readonly Angle[] angles24 = { new Angle(0.0f, 1.0f, 0.0f), new Angle(0.041666666666666664f, 0.96592582628906831f, 0.25881904510252074f), new Angle(0.083333333333333329f, 0.86602540378443871f, 0.5f), new Angle(0.125f, 0.70710678118654757f, 0.70710678118654746f), new Angle(0.16666666666666667f, 0.5f, 0.8660254037844386f), new Angle(0.20833333333333331f, 0.25881904510252096f, 0.9659258262890682f), new Angle(0.25f, 0.0f, 1.0f), new Angle(0.29166666666666663f, -0.25881904510252063f, 0.96592582628906831f), new Angle(0.33333333333333333f, -0.5f, 0.86602540378443871f), new Angle(0.375f, -0.70710678118654746f, 0.70710678118654757f), new Angle(0.41666666666666663f, -0.86602540378443849f, 0.5f), new Angle(0.45833333333333331f, -0.9659258262890682f, 0.25881904510252102f), new Angle(0.5f, -1.0f, 0.0f), new Angle(0.54166666666666663f, -0.96592582628906842f, -0.25881904510252035f), new Angle(0.58333333333333326f, -0.86602540378443882f, -0.5f), new Angle(0.62499999999999989f, -0.70710678118654791f, -0.70710678118654713f), new Angle(0.66666666666666667f, -0.5f, -0.86602540378443837f), new Angle(0.70833333333333326f, -0.25881904510252152f, -0.96592582628906809f), new Angle(0.75f, 0.0f, -1.0f), new Angle(0.79166666666666663f, 0.2588190451025203f, -0.96592582628906842f), new Angle(0.83333333333333326f, 0.5f, -0.86602540378443904f), new Angle(0.875f, 0.70710678118654735f, -0.70710678118654768f), new Angle(0.91666666666666663f, 0.86602540378443837f, -0.5f), new Angle(0.95833333333333326f, 0.96592582628906809f, -0.25881904510252157f), new Angle(1.0f, 1.0f, 0.0f) }; internal List angles; private float iX, iY; // intersection point internal List normals; private Angle interpolatePoints(float newPoint, Angle p1, Angle p2) { var m = (newPoint - p1.angle) / (p2.angle - p1.angle); return new Angle(newPoint, p1.X + m * (p2.X - p1.X), p1.Y + m * (p2.Y - p1.Y)); } private void intersection(double x1, double y1, double x2, double y2, double x3, double y3, double x4, double y4) { // ref: http://local.wasp.uwa.edu.au/~pbourke/geometry/lineline2d/ var denom = (y4 - y3) * (x2 - x1) - (x4 - x3) * (y2 - y1); var uaNumerator = (x4 - x3) * (y1 - y3) - (y4 - y3) * (x1 - x3); if (denom != 0.0) { var ua = uaNumerator / denom; iX = (float) (x1 + ua * (x2 - x1)); iY = (float) (y1 + ua * (y2 - y1)); } } internal void makeAngles(int sides, float startAngle, float stopAngle) { angles = new List(); normals = new List(); var twoPi = Math.PI * 2.0; var twoPiInv = 1.0f / (float) twoPi; if (sides < 1) throw new Exception("number of sides not greater than zero"); if (stopAngle <= startAngle) throw new Exception("stopAngle not greater than startAngle"); if (sides == 3 || sides == 4 || sides == 24) { startAngle *= twoPiInv; stopAngle *= twoPiInv; Angle[] sourceAngles; if (sides == 3) sourceAngles = angles3; else if (sides == 4) sourceAngles = angles4; else sourceAngles = angles24; var startAngleIndex = (int) (startAngle * sides); var endAngleIndex = sourceAngles.Length - 1; if (stopAngle < 1.0f) endAngleIndex = (int) (stopAngle * sides) + 1; if (endAngleIndex == startAngleIndex) endAngleIndex++; for (var angleIndex = startAngleIndex; angleIndex < endAngleIndex + 1; angleIndex++) { angles.Add(sourceAngles[angleIndex]); if (sides == 3) normals.Add(normals3[angleIndex]); else if (sides == 4) normals.Add(normals4[angleIndex]); } if (startAngle > 0.0f) angles[0] = interpolatePoints(startAngle, angles[0], angles[1]); if (stopAngle < 1.0f) { var lastAngleIndex = angles.Count - 1; angles[lastAngleIndex] = interpolatePoints(stopAngle, angles[lastAngleIndex - 1], angles[lastAngleIndex]); } } else { var stepSize = twoPi / sides; var startStep = (int) (startAngle / stepSize); var angle = stepSize * startStep; var step = startStep; double stopAngleTest = stopAngle; if (stopAngle < twoPi) { stopAngleTest = stepSize * ((int) (stopAngle / stepSize) + 1); if (stopAngleTest < stopAngle) stopAngleTest += stepSize; if (stopAngleTest > twoPi) stopAngleTest = twoPi; } while (angle <= stopAngleTest) { Angle newAngle; newAngle.angle = (float) angle; newAngle.X = (float) Math.Cos(angle); newAngle.Y = (float) Math.Sin(angle); angles.Add(newAngle); step += 1; angle = stepSize * step; } if (startAngle > angles[0].angle) { Angle newAngle; intersection(angles[0].X, angles[0].Y, angles[1].X, angles[1].Y, 0.0f, 0.0f, (float) Math.Cos(startAngle), (float) Math.Sin(startAngle)); newAngle.angle = startAngle; newAngle.X = iX; newAngle.Y = iY; angles[0] = newAngle; } var index = angles.Count - 1; if (stopAngle < angles[index].angle) { Angle newAngle; intersection(angles[index - 1].X, angles[index - 1].Y, angles[index].X, angles[index].Y, 0.0f, 0.0f, (float) Math.Cos(stopAngle), (float) Math.Sin(stopAngle)); newAngle.angle = stopAngle; newAngle.X = iX; newAngle.Y = iY; angles[index] = newAngle; } } } } /// /// generates a profile for extrusion /// public class Profile { private const float twoPi = 2.0f * (float) Math.PI; public int bottomFaceNumber; public bool calcVertexNormals; public List coords; public List cut1CoordIndices; public List cut2CoordIndices; public Coord cutNormal1; public Coord cutNormal2; public string errorMessage; public Coord faceNormal = new Coord(0.0f, 0.0f, 1.0f); public List faceNumbers; public List faces; public List faceUVs; public List hollowCoordIndices; public int hollowFaceNumber = -1; public int numHollowVerts; public int numOuterVerts; public int numPrimFaces; // use these for making individual meshes for each prim face public List outerCoordIndices; public int outerFaceNumber = -1; public List us; public List vertexNormals; public Profile() { coords = new List(); faces = new List(); vertexNormals = new List(); us = new List(); faceUVs = new List(); faceNumbers = new List(); } public Profile(int sides, float profileStart, float profileEnd, float hollow, int hollowSides, bool createFaces, bool calcVertexNormals) { this.calcVertexNormals = calcVertexNormals; coords = new List(); faces = new List(); vertexNormals = new List(); us = new List(); faceUVs = new List(); faceNumbers = new List(); var center = new Coord(0.0f, 0.0f, 0.0f); var hollowCoords = new List(); var hollowNormals = new List(); var hollowUs = new List(); if (calcVertexNormals) { outerCoordIndices = new List(); hollowCoordIndices = new List(); cut1CoordIndices = new List(); cut2CoordIndices = new List(); } var hasHollow = hollow > 0.0f; var hasProfileCut = profileStart > 0.0f || profileEnd < 1.0f; var angles = new AngleList(); var hollowAngles = new AngleList(); var xScale = 0.5f; var yScale = 0.5f; if (sides == 4) // corners of a square are sqrt(2) from center { xScale = 0.707107f; yScale = 0.707107f; } var startAngle = profileStart * twoPi; var stopAngle = profileEnd * twoPi; try { angles.makeAngles(sides, startAngle, stopAngle); } catch (Exception ex) { errorMessage = "makeAngles failed: Exception: " + ex + "\nsides: " + sides + " startAngle: " + startAngle + " stopAngle: " + stopAngle; return; } numOuterVerts = angles.angles.Count; // flag to create as few triangles as possible for 3 or 4 side profile var simpleFace = sides < 5 && !hasHollow && !hasProfileCut; if (hasHollow) { if (sides == hollowSides) hollowAngles = angles; else try { hollowAngles.makeAngles(hollowSides, startAngle, stopAngle); } catch (Exception ex) { errorMessage = "makeAngles failed: Exception: " + ex + "\nsides: " + sides + " startAngle: " + startAngle + " stopAngle: " + stopAngle; return; } numHollowVerts = hollowAngles.angles.Count; } else if (!simpleFace) { coords.Add(center); if (this.calcVertexNormals) vertexNormals.Add(new Coord(0.0f, 0.0f, 1.0f)); us.Add(0.0f); } var z = 0.0f; Angle angle; var newVert = new Coord(); if (hasHollow && hollowSides != sides) { var numHollowAngles = hollowAngles.angles.Count; for (var i = 0; i < numHollowAngles; i++) { angle = hollowAngles.angles[i]; newVert.X = hollow * xScale * angle.X; newVert.Y = hollow * yScale * angle.Y; newVert.Z = z; hollowCoords.Add(newVert); if (this.calcVertexNormals) { hollowNormals.Add(hollowSides < 5 ? hollowAngles.normals[i].Invert() : new Coord(-angle.X, -angle.Y, 0.0f)); if (hollowSides == 4) hollowUs.Add(angle.angle * hollow * 0.707107f); else hollowUs.Add(angle.angle * hollow); } } } var index = 0; var numAngles = angles.angles.Count; for (var i = 0; i < numAngles; i++) { angle = angles.angles[i]; newVert.X = angle.X * xScale; newVert.Y = angle.Y * yScale; newVert.Z = z; coords.Add(newVert); if (this.calcVertexNormals) { outerCoordIndices.Add(coords.Count - 1); if (sides < 5) { vertexNormals.Add(angles.normals[i]); var u = angle.angle; us.Add(u); } else { vertexNormals.Add(new Coord(angle.X, angle.Y, 0.0f)); us.Add(angle.angle); } } if (hasHollow) { if (hollowSides == sides) { newVert.X *= hollow; newVert.Y *= hollow; newVert.Z = z; hollowCoords.Add(newVert); if (this.calcVertexNormals) { hollowNormals.Add(sides < 5 ? angles.normals[i].Invert() : new Coord(-angle.X, -angle.Y, 0.0f)); hollowUs.Add(angle.angle * hollow); } } } else if (!simpleFace && createFaces && angle.angle > 0.0001f) { var newFace = new Face { v1 = 0, v2 = index, v3 = index + 1 }; faces.Add(newFace); } index += 1; } if (hasHollow) { hollowCoords.Reverse(); if (this.calcVertexNormals) { hollowNormals.Reverse(); hollowUs.Reverse(); } if (createFaces) { var numTotalVerts = numOuterVerts + numHollowVerts; if (numOuterVerts == numHollowVerts) { var newFace = new Face(); for (var coordIndex = 0; coordIndex < numOuterVerts - 1; coordIndex++) { newFace.v1 = coordIndex; newFace.v2 = coordIndex + 1; newFace.v3 = numTotalVerts - coordIndex - 1; faces.Add(newFace); newFace.v1 = coordIndex + 1; newFace.v2 = numTotalVerts - coordIndex - 2; newFace.v3 = numTotalVerts - coordIndex - 1; faces.Add(newFace); } } else { if (numOuterVerts < numHollowVerts) { var newFace = new Face(); var j = 0; // j is the index for outer vertices var maxJ = numOuterVerts - 1; for (var i = 0; i < numHollowVerts; i++) // i is the index for inner vertices { if (j < maxJ) if (angles.angles[j + 1].angle - hollowAngles.angles[i].angle < hollowAngles.angles[i].angle - angles.angles[j].angle + 0.000001f) { newFace.v1 = numTotalVerts - i - 1; newFace.v2 = j; newFace.v3 = j + 1; faces.Add(newFace); j += 1; } newFace.v1 = j; newFace.v2 = numTotalVerts - i - 2; newFace.v3 = numTotalVerts - i - 1; faces.Add(newFace); } } else // numHollowVerts < numOuterVerts { var newFace = new Face(); var j = 0; // j is the index for inner vertices var maxJ = numHollowVerts - 1; for (var i = 0; i < numOuterVerts; i++) { if (j < maxJ) if (hollowAngles.angles[j + 1].angle - angles.angles[i].angle < angles.angles[i].angle - hollowAngles.angles[j].angle + 0.000001f) { newFace.v1 = i; newFace.v2 = numTotalVerts - j - 2; newFace.v3 = numTotalVerts - j - 1; faces.Add(newFace); j += 1; } newFace.v1 = numTotalVerts - j - 1; newFace.v2 = i; newFace.v3 = i + 1; faces.Add(newFace); } } } } if (calcVertexNormals) foreach (var hc in hollowCoords) { coords.Add(hc); hollowCoordIndices.Add(coords.Count - 1); } else coords.AddRange(hollowCoords); if (this.calcVertexNormals) { vertexNormals.AddRange(hollowNormals); us.AddRange(hollowUs); } } if (simpleFace && createFaces) if (sides == 3) { faces.Add(new Face(0, 1, 2)); } else if (sides == 4) { faces.Add(new Face(0, 1, 2)); faces.Add(new Face(0, 2, 3)); } if (calcVertexNormals && hasProfileCut) { var lastOuterVertIndex = numOuterVerts - 1; if (hasHollow) { cut1CoordIndices.Add(0); cut1CoordIndices.Add(coords.Count - 1); cut2CoordIndices.Add(lastOuterVertIndex + 1); cut2CoordIndices.Add(lastOuterVertIndex); cutNormal1.X = coords[0].Y - coords[coords.Count - 1].Y; cutNormal1.Y = -(coords[0].X - coords[coords.Count - 1].X); cutNormal2.X = coords[lastOuterVertIndex + 1].Y - coords[lastOuterVertIndex].Y; cutNormal2.Y = -(coords[lastOuterVertIndex + 1].X - coords[lastOuterVertIndex].X); } else { cut1CoordIndices.Add(0); cut1CoordIndices.Add(1); cut2CoordIndices.Add(lastOuterVertIndex); cut2CoordIndices.Add(0); cutNormal1.X = vertexNormals[1].Y; cutNormal1.Y = -vertexNormals[1].X; cutNormal2.X = -vertexNormals[vertexNormals.Count - 2].Y; cutNormal2.Y = vertexNormals[vertexNormals.Count - 2].X; } cutNormal1.Normalize(); cutNormal2.Normalize(); } MakeFaceUVs(); hollowCoords = null; hollowNormals = null; hollowUs = null; if (calcVertexNormals) { // calculate prim face numbers // face number order is top, outer, hollow, bottom, start cut, end cut // I know it's ugly but so is the whole concept of prim face numbers var faceNum = 1; // start with outer faces outerFaceNumber = faceNum; var startVert = hasProfileCut && !hasHollow ? 1 : 0; if (startVert > 0) faceNumbers.Add(-1); for (var i = 0; i < numOuterVerts - 1; i++) faceNumbers.Add(sides < 5 && i <= sides ? faceNum++ : faceNum); faceNumbers.Add(hasProfileCut ? -1 : faceNum++); if (sides > 4 && (hasHollow || hasProfileCut)) faceNum++; if (sides < 5 && (hasHollow || hasProfileCut) && numOuterVerts < sides) faceNum++; if (hasHollow) { for (var i = 0; i < numHollowVerts; i++) faceNumbers.Add(faceNum); hollowFaceNumber = faceNum++; } bottomFaceNumber = faceNum++; if (hasHollow && hasProfileCut) faceNumbers.Add(faceNum++); for (var i = 0; i < faceNumbers.Count; i++) if (faceNumbers[i] == -1) faceNumbers[i] = faceNum++; numPrimFaces = faceNum; } } public void MakeFaceUVs() { faceUVs = new List(); foreach (var c in coords) faceUVs.Add(new UVCoord(1.0f - (0.5f + c.X), 1.0f - (0.5f - c.Y))); } public Profile Copy() { return Copy(true); } public Profile Copy(bool needFaces) { var copy = new Profile(); copy.coords.AddRange(coords); copy.faceUVs.AddRange(faceUVs); if (needFaces) copy.faces.AddRange(faces); if (copy.calcVertexNormals = calcVertexNormals) { copy.vertexNormals.AddRange(vertexNormals); copy.faceNormal = faceNormal; copy.cutNormal1 = cutNormal1; copy.cutNormal2 = cutNormal2; copy.us.AddRange(us); copy.faceNumbers.AddRange(faceNumbers); copy.cut1CoordIndices = new List(cut1CoordIndices); copy.cut2CoordIndices = new List(cut2CoordIndices); copy.hollowCoordIndices = new List(hollowCoordIndices); copy.outerCoordIndices = new List(outerCoordIndices); } copy.numOuterVerts = numOuterVerts; copy.numHollowVerts = numHollowVerts; return copy; } public void AddPos(Coord v) { AddPos(v.X, v.Y, v.Z); } public void AddPos(float x, float y, float z) { int i; var numVerts = coords.Count; Coord vert; for (i = 0; i < numVerts; i++) { vert = coords[i]; vert.X += x; vert.Y += y; vert.Z += z; coords[i] = vert; } } public void AddRot(Quat q) { int i; var numVerts = coords.Count; for (i = 0; i < numVerts; i++) coords[i] *= q; if (calcVertexNormals) { var numNormals = vertexNormals.Count; for (i = 0; i < numNormals; i++) vertexNormals[i] *= q; faceNormal *= q; cutNormal1 *= q; cutNormal2 *= q; } } public void Scale(float x, float y) { int i; var numVerts = coords.Count; Coord vert; for (i = 0; i < numVerts; i++) { vert = coords[i]; vert.X *= x; vert.Y *= y; coords[i] = vert; } } /// /// Changes order of the vertex indices and negates the center vertex normal. Does not alter vertex normals of radial /// vertices /// public void FlipNormals() { int i; var numFaces = faces.Count; Face tmpFace; int tmp; for (i = 0; i < numFaces; i++) { tmpFace = faces[i]; tmp = tmpFace.v3; tmpFace.v3 = tmpFace.v1; tmpFace.v1 = tmp; faces[i] = tmpFace; } if (calcVertexNormals) { var normalCount = vertexNormals.Count; if (normalCount > 0) { var n = vertexNormals[normalCount - 1]; n.Z = -n.Z; vertexNormals[normalCount - 1] = n; } } faceNormal.X = -faceNormal.X; faceNormal.Y = -faceNormal.Y; faceNormal.Z = -faceNormal.Z; var numfaceUVs = faceUVs.Count; for (i = 0; i < numfaceUVs; i++) { var uv = faceUVs[i]; uv.V = 1.0f - uv.V; faceUVs[i] = uv; } } public void AddValue2FaceVertexIndices(int num) { var numFaces = faces.Count; Face tmpFace; for (var i = 0; i < numFaces; i++) { tmpFace = faces[i]; tmpFace.v1 += num; tmpFace.v2 += num; tmpFace.v3 += num; faces[i] = tmpFace; } } public void AddValue2FaceNormalIndices(int num) { if (calcVertexNormals) { var numFaces = faces.Count; Face tmpFace; for (var i = 0; i < numFaces; i++) { tmpFace = faces[i]; tmpFace.n1 += num; tmpFace.n2 += num; tmpFace.n3 += num; faces[i] = tmpFace; } } } public void DumpRaw(string path, string name, string title) { if (path == null) return; var fileName = name + "_" + title + ".raw"; var completePath = System.IO.Path.Combine(path, fileName); var sw = new StreamWriter(completePath); for (var i = 0; i < faces.Count; i++) { var s = coords[faces[i].v1].ToString(); s += " " + coords[faces[i].v2]; s += " " + coords[faces[i].v3]; sw.WriteLine(s); } sw.Close(); } } public struct PathNode { public Coord position; public Quat rotation; public float xScale; public float yScale; public float percentOfPath; } public enum PathType { Linear = 0, Circular = 1, Flexible = 2 } public class Path { private const float twoPi = 2.0f * (float) Math.PI; public float dimpleBegin; public float dimpleEnd = 1.0f; public float holeSizeX = 1.0f; // called pathScaleX in pbs public float holeSizeY = 0.25f; public float pathCutBegin; public float pathCutEnd = 1.0f; public List pathNodes = new List(); public float radius; public float revolutions = 1.0f; public float skew; public int stepsPerRevolution = 24; public float taperX; public float taperY; public float topShearX; public float topShearY; public float twistBegin; public float twistEnd; public void Create(PathType pathType, int steps) { if (taperX > 0.999f) taperX = 0.999f; if (taperX < -0.999f) taperX = -0.999f; if (taperY > 0.999f) taperY = 0.999f; if (taperY < -0.999f) taperY = -0.999f; if (pathType == PathType.Linear || pathType == PathType.Flexible) { var step = 0; var length = pathCutEnd - pathCutBegin; var twistTotal = twistEnd - twistBegin; var twistTotalAbs = Math.Abs(twistTotal); if (twistTotalAbs > 0.01f) steps += (int) (twistTotalAbs * 3.66); // dahlia's magic number var start = -0.5f; var stepSize = length / steps; var percentOfPathMultiplier = stepSize * 0.999999f; var xOffset = topShearX * pathCutBegin; var yOffset = topShearY * pathCutBegin; var zOffset = start; var xOffsetStepIncrement = topShearX * length / steps; var yOffsetStepIncrement = topShearY * length / steps; var percentOfPath = pathCutBegin; zOffset += percentOfPath; // sanity checks var done = false; while (!done) { var newNode = new PathNode {xScale = 1.0f}; if (taperX == 0.0f) newNode.xScale = 1.0f; else if (taperX > 0.0f) newNode.xScale = 1.0f - percentOfPath * taperX; else newNode.xScale = 1.0f + (1.0f - percentOfPath) * taperX; newNode.yScale = 1.0f; if (taperY == 0.0f) newNode.yScale = 1.0f; else if (taperY > 0.0f) newNode.yScale = 1.0f - percentOfPath * taperY; else newNode.yScale = 1.0f + (1.0f - percentOfPath) * taperY; var twist = twistBegin + twistTotal * percentOfPath; newNode.rotation = new Quat(new Coord(0.0f, 0.0f, 1.0f), twist); newNode.position = new Coord(xOffset, yOffset, zOffset); newNode.percentOfPath = percentOfPath; pathNodes.Add(newNode); if (step < steps) { step += 1; percentOfPath += percentOfPathMultiplier; xOffset += xOffsetStepIncrement; yOffset += yOffsetStepIncrement; zOffset += stepSize; if (percentOfPath > pathCutEnd) done = true; } else { done = true; } } } // end of linear path code else // pathType == Circular { var twistTotal = twistEnd - twistBegin; // if the profile has a lot of twist, add more layers otherwise the layers may overlap // and the resulting mesh may be quite inaccurate. This method is arbitrary and doesn't // accurately match the viewer var twistTotalAbs = Math.Abs(twistTotal); if (twistTotalAbs > 0.01f) { if (twistTotalAbs > Math.PI * 1.5f) steps *= 2; if (twistTotalAbs > Math.PI * 3.0f) steps *= 2; } var yPathScale = holeSizeY * 0.5f; var pathLength = pathCutEnd - pathCutBegin; var totalSkew = skew * 2.0f * pathLength; var skewStart = pathCutBegin * 2.0f * skew - skew; var xOffsetTopShearXFactor = topShearX * (0.25f + 0.5f * (0.5f - holeSizeY)); var yShearCompensation = 1.0f + Math.Abs(topShearY) * 0.25f; // It's not quite clear what pushY (Y top shear) does, but subtracting it from the start and end // angles appears to approximate it's effects on path cut. Likewise, adding it to the angle used // to calculate the sine for generating the path radius appears to approximate it's effects there // too, but there are some subtle differences in the radius which are noticeable as the prim size // increases and it may affect megaprims quite a bit. The effect of the Y top shear parameter on // the meshes generated with this technique appear nearly identical in shape to the same prims when // displayed by the viewer. var startAngle = twoPi * pathCutBegin * revolutions - topShearY * 0.9f; var endAngle = twoPi * pathCutEnd * revolutions - topShearY * 0.9f; var stepSize = twoPi / stepsPerRevolution; var step = (int) (startAngle / stepSize); var angle = startAngle; var done = false; while (!done) // loop through the length of the path and add the layers { var newNode = new PathNode(); var xProfileScale = (1.0f - Math.Abs(skew)) * holeSizeX; var yProfileScale = holeSizeY; var percentOfPath = angle / (twoPi * revolutions); var percentOfAngles = (angle - startAngle) / (endAngle - startAngle); if (taperX > 0.01f) xProfileScale *= 1.0f - percentOfPath * taperX; else if (taperX < -0.01f) xProfileScale *= 1.0f + (1.0f - percentOfPath) * taperX; if (taperY > 0.01f) yProfileScale *= 1.0f - percentOfPath * taperY; else if (taperY < -0.01f) yProfileScale *= 1.0f + (1.0f - percentOfPath) * taperY; newNode.xScale = xProfileScale; newNode.yScale = yProfileScale; var radiusScale = 1.0f; if (radius > 0.001f) radiusScale = 1.0f - radius * percentOfPath; else if (radius < 0.001f) radiusScale = 1.0f + radius * (1.0f - percentOfPath); var twist = twistBegin + twistTotal * percentOfPath; var xOffset = 0.5f * (skewStart + totalSkew * percentOfAngles); xOffset += (float) Math.Sin(angle) * xOffsetTopShearXFactor; var yOffset = yShearCompensation * (float) Math.Cos(angle) * (0.5f - yPathScale) * radiusScale; var zOffset = (float) Math.Sin(angle + topShearY) * (0.5f - yPathScale) * radiusScale; newNode.position = new Coord(xOffset, yOffset, zOffset); // now orient the rotation of the profile layer relative to it's position on the path // adding taperY to the angle used to generate the quat appears to approximate the viewer newNode.rotation = new Quat(new Coord(1.0f, 0.0f, 0.0f), angle + topShearY); // next apply twist rotation to the profile layer if (twistTotal != 0.0f || twistBegin != 0.0f) newNode.rotation *= new Quat(new Coord(0.0f, 0.0f, 1.0f), twist); newNode.percentOfPath = percentOfPath; pathNodes.Add(newNode); // calculate terms for next iteration // calculate the angle for the next iteration of the loop if (angle >= endAngle - 0.01) { done = true; } else { step += 1; angle = stepSize * step; if (angle > endAngle) angle = endAngle; } } } } } public class PrimMesh { private const float twoPi = 2.0f * (float) Math.PI; public bool calcVertexNormals; public List coords; public float dimpleBegin; public float dimpleEnd = 1.0f; public string errorMessage = ""; public List faces; public float holeSizeX = 1.0f; // called pathScaleX in pbs public float holeSizeY = 0.25f; private readonly float hollow; private readonly int hollowSides = 4; public List normals; private bool normalsProcessed; public int numPrimFaces; public float pathCutBegin; public float pathCutEnd = 1.0f; private readonly float profileEnd = 1.0f; private readonly float profileStart; public float radius; public float revolutions = 1.0f; private readonly int sides = 4; public float skew; public bool sphereMode = false; public int stepsPerRevolution = 24; public float taperX; public float taperY; public float topShearX; public float topShearY; public int twistBegin; public int twistEnd; public List viewerFaces; public bool viewerMode; /// /// Constructs a PrimMesh object and creates the profile for extrusion. /// /// /// /// /// /// public PrimMesh(int sides, float profileStart, float profileEnd, float hollow, int hollowSides) { coords = new List(); faces = new List(); this.sides = sides; this.profileStart = profileStart; this.profileEnd = profileEnd; this.hollow = hollow; this.hollowSides = hollowSides; if (sides < 3) this.sides = 3; if (hollowSides < 3) this.hollowSides = 3; if (profileStart < 0.0f) this.profileStart = 0.0f; if (profileEnd > 1.0f) this.profileEnd = 1.0f; if (profileEnd < 0.02f) this.profileEnd = 0.02f; if (profileStart >= profileEnd) this.profileStart = profileEnd - 0.02f; if (hollow > 0.99f) this.hollow = 0.99f; if (hollow < 0.0f) this.hollow = 0.0f; } public int ProfileOuterFaceNumber { get; private set; } = -1; public int ProfileHollowFaceNumber { get; private set; } = -1; public bool HasProfileCut { get; private set; } public bool HasHollow { get; private set; } /// /// Human readable string representation of the parameters used to create a mesh. /// /// public string ParamsToDisplayString() { var s = ""; s += "sides..................: " + sides; s += "\nhollowSides..........: " + hollowSides; s += "\nprofileStart.........: " + profileStart; s += "\nprofileEnd...........: " + profileEnd; s += "\nhollow...............: " + hollow; s += "\ntwistBegin...........: " + twistBegin; s += "\ntwistEnd.............: " + twistEnd; s += "\ntopShearX............: " + topShearX; s += "\ntopShearY............: " + topShearY; s += "\npathCutBegin.........: " + pathCutBegin; s += "\npathCutEnd...........: " + pathCutEnd; s += "\ndimpleBegin..........: " + dimpleBegin; s += "\ndimpleEnd............: " + dimpleEnd; s += "\nskew.................: " + skew; s += "\nholeSizeX............: " + holeSizeX; s += "\nholeSizeY............: " + holeSizeY; s += "\ntaperX...............: " + taperX; s += "\ntaperY...............: " + taperY; s += "\nradius...............: " + radius; s += "\nrevolutions..........: " + revolutions; s += "\nstepsPerRevolution...: " + stepsPerRevolution; s += "\nsphereMode...........: " + sphereMode; s += "\nhasProfileCut........: " + HasProfileCut; s += "\nhasHollow............: " + HasHollow; s += "\nviewerMode...........: " + viewerMode; return s; } /// /// Extrudes a profile along a path. /// public void Extrude(PathType pathType) { var needEndFaces = false; coords = new List(); this.faces = new List(); if (viewerMode) { viewerFaces = new List(); calcVertexNormals = true; } if (calcVertexNormals) normals = new List(); var steps = 1; var length = pathCutEnd - pathCutBegin; normalsProcessed = false; if (viewerMode && sides == 3) if (Math.Abs(taperX) > 0.01 || Math.Abs(taperY) > 0.01) steps = (int) (steps * 4.5 * length); if (sphereMode) HasProfileCut = profileEnd - profileStart < 0.4999f; else HasProfileCut = profileEnd - profileStart < 0.9999f; HasHollow = this.hollow > 0.001f; var twistBegin = this.twistBegin / 360.0f * twoPi; var twistEnd = this.twistEnd / 360.0f * twoPi; var twistTotal = twistEnd - twistBegin; var twistTotalAbs = Math.Abs(twistTotal); if (twistTotalAbs > 0.01f) steps += (int) (twistTotalAbs * 3.66); // dahlia's magic number var hollow = this.hollow; if (pathType == PathType.Circular) { needEndFaces = false; if (pathCutBegin != 0.0f || pathCutEnd != 1.0f) needEndFaces = true; else if (taperX != 0.0f || taperY != 0.0f) needEndFaces = true; else if (skew != 0.0f) needEndFaces = true; else if (twistTotal != 0.0f) needEndFaces = true; else if (radius != 0.0f) needEndFaces = true; } else { needEndFaces = true; } // sanity checks var initialProfileRot = 0.0f; if (pathType == PathType.Circular) { switch (sides) { case 3: initialProfileRot = (float) Math.PI; if (hollowSides == 4) { if (hollow > 0.7f) hollow = 0.7f; hollow *= 0.707f; } else { hollow *= 0.5f; } break; case 4: initialProfileRot = 0.25f * (float) Math.PI; if (hollowSides != 4) hollow *= 0.707f; break; default: if (sides > 4) { initialProfileRot = (float) Math.PI; if (hollowSides == 4) { if (hollow > 0.7f) hollow = 0.7f; hollow /= 0.7f; } } break; } } else { switch (sides) { case 3: if (hollowSides == 4) { if (hollow > 0.7f) hollow = 0.7f; hollow *= 0.707f; } else { hollow *= 0.5f; } break; case 4: initialProfileRot = 1.25f * (float) Math.PI; if (hollowSides != 4) hollow *= 0.707f; break; case 24 when hollowSides == 4: hollow *= 1.414f; break; } } var profile = new Profile(sides, profileStart, profileEnd, hollow, hollowSides, true, calcVertexNormals); errorMessage = profile.errorMessage; numPrimFaces = profile.numPrimFaces; var cut1FaceNumber = profile.bottomFaceNumber + 1; var cut2FaceNumber = cut1FaceNumber + 1; if (!needEndFaces) { cut1FaceNumber -= 2; cut2FaceNumber -= 2; } ProfileOuterFaceNumber = profile.outerFaceNumber; if (!needEndFaces) ProfileOuterFaceNumber--; if (HasHollow) { ProfileHollowFaceNumber = profile.hollowFaceNumber; if (!needEndFaces) ProfileHollowFaceNumber--; } var cut1Vert = -1; var cut2Vert = -1; if (HasProfileCut) { cut1Vert = HasHollow ? profile.coords.Count - 1 : 0; cut2Vert = HasHollow ? profile.numOuterVerts - 1 : profile.numOuterVerts; } if (initialProfileRot != 0.0f) { profile.AddRot(new Quat(new Coord(0.0f, 0.0f, 1.0f), initialProfileRot)); if (viewerMode) profile.MakeFaceUVs(); } var lastCutNormal1 = new Coord(); var lastCutNormal2 = new Coord(); var thisV = 0.0f; var lastV = 0.0f; var path = new Path { twistBegin = twistBegin, twistEnd = twistEnd, topShearX = topShearX, topShearY = topShearY, pathCutBegin = pathCutBegin, pathCutEnd = pathCutEnd, dimpleBegin = dimpleBegin, dimpleEnd = dimpleEnd, skew = skew, holeSizeX = holeSizeX, holeSizeY = holeSizeY, taperX = taperX, taperY = taperY, radius = radius, revolutions = revolutions, stepsPerRevolution = stepsPerRevolution }; path.Create(pathType, steps); for (var nodeIndex = 0; nodeIndex < path.pathNodes.Count; nodeIndex++) { var node = path.pathNodes[nodeIndex]; var newLayer = profile.Copy(); newLayer.Scale(node.xScale, node.yScale); newLayer.AddRot(node.rotation); newLayer.AddPos(node.position); if (needEndFaces && nodeIndex == 0) { newLayer.FlipNormals(); // add the bottom faces to the viewerFaces list if (viewerMode) { var faceNormal = newLayer.faceNormal; var newViewerFace = new ViewerFace(profile.bottomFaceNumber); var numFaces = newLayer.faces.Count; var faces = newLayer.faces; for (var i = 0; i < numFaces; i++) { var face = faces[i]; newViewerFace.v1 = newLayer.coords[face.v1]; newViewerFace.v2 = newLayer.coords[face.v2]; newViewerFace.v3 = newLayer.coords[face.v3]; newViewerFace.coordIndex1 = face.v1; newViewerFace.coordIndex2 = face.v2; newViewerFace.coordIndex3 = face.v3; newViewerFace.n1 = faceNormal; newViewerFace.n2 = faceNormal; newViewerFace.n3 = faceNormal; newViewerFace.uv1 = newLayer.faceUVs[face.v1]; newViewerFace.uv2 = newLayer.faceUVs[face.v2]; newViewerFace.uv3 = newLayer.faceUVs[face.v3]; if (pathType == PathType.Linear) { newViewerFace.uv1.Flip(); newViewerFace.uv2.Flip(); newViewerFace.uv3.Flip(); } viewerFaces.Add(newViewerFace); } } } // if (nodeIndex == 0) // append this layer var coordsLen = coords.Count; newLayer.AddValue2FaceVertexIndices(coordsLen); coords.AddRange(newLayer.coords); if (calcVertexNormals) { newLayer.AddValue2FaceNormalIndices(normals.Count); normals.AddRange(newLayer.vertexNormals); } if (node.percentOfPath < pathCutBegin + 0.01f || node.percentOfPath > pathCutEnd - 0.01f) this.faces.AddRange(newLayer.faces); // fill faces between layers var numVerts = newLayer.coords.Count; var newFace1 = new Face(); var newFace2 = new Face(); thisV = 1.0f - node.percentOfPath; if (nodeIndex > 0) { var startVert = coordsLen + 1; var endVert = coords.Count; if (sides < 5 || HasProfileCut || HasHollow) startVert--; for (var i = startVert; i < endVert; i++) { var iNext = i + 1; if (i == endVert - 1) iNext = startVert; var whichVert = i - startVert; newFace1.v1 = i; newFace1.v2 = i - numVerts; newFace1.v3 = iNext; newFace1.n1 = newFace1.v1; newFace1.n2 = newFace1.v2; newFace1.n3 = newFace1.v3; faces.Add(newFace1); newFace2.v1 = iNext; newFace2.v2 = i - numVerts; newFace2.v3 = iNext - numVerts; newFace2.n1 = newFace2.v1; newFace2.n2 = newFace2.v2; newFace2.n3 = newFace2.v3; faces.Add(newFace2); if (viewerMode) { // add the side faces to the list of viewerFaces here var primFaceNum = profile.faceNumbers[whichVert]; if (!needEndFaces) primFaceNum -= 1; var newViewerFace1 = new ViewerFace(primFaceNum); var newViewerFace2 = new ViewerFace(primFaceNum); var uIndex = whichVert; if (!HasHollow && sides > 4 && uIndex < newLayer.us.Count - 1) uIndex++; var u1 = newLayer.us[uIndex]; var u2 = 1.0f; if (uIndex < newLayer.us.Count - 1) u2 = newLayer.us[uIndex + 1]; if (whichVert == cut1Vert || whichVert == cut2Vert) { u1 = 0.0f; u2 = 1.0f; } else if (sides < 5) { if (whichVert < profile.numOuterVerts) { // boxes and prisms have one texture face per side of the prim, so the U values have to be scaled // to reflect the entire texture width u1 *= sides; u2 *= sides; u2 -= (int) u1; u1 -= (int) u1; if (u2 < 0.1f) u2 = 1.0f; } } if (sphereMode) if (whichVert != cut1Vert && whichVert != cut2Vert) { u1 = u1 * 2.0f - 1.0f; u2 = u2 * 2.0f - 1.0f; if (whichVert >= newLayer.numOuterVerts) { u1 -= hollow; u2 -= hollow; } } newViewerFace1.uv1.U = u1; newViewerFace1.uv2.U = u1; newViewerFace1.uv3.U = u2; newViewerFace1.uv1.V = thisV; newViewerFace1.uv2.V = lastV; newViewerFace1.uv3.V = thisV; newViewerFace2.uv1.U = u2; newViewerFace2.uv2.U = u1; newViewerFace2.uv3.U = u2; newViewerFace2.uv1.V = thisV; newViewerFace2.uv2.V = lastV; newViewerFace2.uv3.V = lastV; newViewerFace1.v1 = coords[newFace1.v1]; newViewerFace1.v2 = coords[newFace1.v2]; newViewerFace1.v3 = coords[newFace1.v3]; newViewerFace2.v1 = coords[newFace2.v1]; newViewerFace2.v2 = coords[newFace2.v2]; newViewerFace2.v3 = coords[newFace2.v3]; newViewerFace1.coordIndex1 = newFace1.v1; newViewerFace1.coordIndex2 = newFace1.v2; newViewerFace1.coordIndex3 = newFace1.v3; newViewerFace2.coordIndex1 = newFace2.v1; newViewerFace2.coordIndex2 = newFace2.v2; newViewerFace2.coordIndex3 = newFace2.v3; // profile cut faces if (whichVert == cut1Vert) { newViewerFace1.primFaceNumber = cut1FaceNumber; newViewerFace2.primFaceNumber = cut1FaceNumber; newViewerFace1.n1 = newLayer.cutNormal1; newViewerFace1.n2 = newViewerFace1.n3 = lastCutNormal1; newViewerFace2.n1 = newViewerFace2.n3 = newLayer.cutNormal1; newViewerFace2.n2 = lastCutNormal1; } else if (whichVert == cut2Vert) { newViewerFace1.primFaceNumber = cut2FaceNumber; newViewerFace2.primFaceNumber = cut2FaceNumber; newViewerFace1.n1 = newLayer.cutNormal2; newViewerFace1.n2 = lastCutNormal2; newViewerFace1.n3 = lastCutNormal2; newViewerFace2.n1 = newLayer.cutNormal2; newViewerFace2.n3 = newLayer.cutNormal2; newViewerFace2.n2 = lastCutNormal2; } else // outer and hollow faces { if (sides < 5 && whichVert < newLayer.numOuterVerts || hollowSides < 5 && whichVert >= newLayer.numOuterVerts) { // looks terrible when path is twisted... need vertex normals here newViewerFace1.CalcSurfaceNormal(); newViewerFace2.CalcSurfaceNormal(); } else { newViewerFace1.n1 = normals[newFace1.n1]; newViewerFace1.n2 = normals[newFace1.n2]; newViewerFace1.n3 = normals[newFace1.n3]; newViewerFace2.n1 = normals[newFace2.n1]; newViewerFace2.n2 = normals[newFace2.n2]; newViewerFace2.n3 = normals[newFace2.n3]; } } viewerFaces.Add(newViewerFace1); viewerFaces.Add(newViewerFace2); } } } lastCutNormal1 = newLayer.cutNormal1; lastCutNormal2 = newLayer.cutNormal2; lastV = thisV; if (needEndFaces && nodeIndex == path.pathNodes.Count - 1 && viewerMode) { // add the top faces to the viewerFaces list here var faceNormal = newLayer.faceNormal; var newViewerFace = new ViewerFace(0); var numFaces = newLayer.faces.Count; var faces = newLayer.faces; for (var i = 0; i < numFaces; i++) { var face = faces[i]; newViewerFace.v1 = newLayer.coords[face.v1 - coordsLen]; newViewerFace.v2 = newLayer.coords[face.v2 - coordsLen]; newViewerFace.v3 = newLayer.coords[face.v3 - coordsLen]; newViewerFace.coordIndex1 = face.v1 - coordsLen; newViewerFace.coordIndex2 = face.v2 - coordsLen; newViewerFace.coordIndex3 = face.v3 - coordsLen; newViewerFace.n1 = faceNormal; newViewerFace.n2 = faceNormal; newViewerFace.n3 = faceNormal; newViewerFace.uv1 = newLayer.faceUVs[face.v1 - coordsLen]; newViewerFace.uv2 = newLayer.faceUVs[face.v2 - coordsLen]; newViewerFace.uv3 = newLayer.faceUVs[face.v3 - coordsLen]; if (pathType == PathType.Linear) { newViewerFace.uv1.Flip(); newViewerFace.uv2.Flip(); newViewerFace.uv3.Flip(); } viewerFaces.Add(newViewerFace); } } } // for (int nodeIndex = 0; nodeIndex < path.pathNodes.Count; nodeIndex++) } /// /// DEPRICATED - use Extrude(PathType.Linear) instead /// Extrudes a profile along a straight line path. Used for prim types box, cylinder, and prism. /// public void ExtrudeLinear() { Extrude(PathType.Linear); } /// /// DEPRICATED - use Extrude(PathType.Circular) instead /// Extrude a profile into a circular path prim mesh. Used for prim types torus, tube, and ring. /// public void ExtrudeCircular() { Extrude(PathType.Circular); } private Coord SurfaceNormal(Coord c1, Coord c2, Coord c3) { var edge1 = new Coord(c2.X - c1.X, c2.Y - c1.Y, c2.Z - c1.Z); var edge2 = new Coord(c3.X - c1.X, c3.Y - c1.Y, c3.Z - c1.Z); var normal = Coord.Cross(edge1, edge2); normal.Normalize(); return normal; } private Coord SurfaceNormal(Face face) { return SurfaceNormal(coords[face.v1], coords[face.v2], coords[face.v3]); } /// /// Calculate the surface normal for a face in the list of faces /// /// /// public Coord SurfaceNormal(int faceIndex) { var numFaces = faces.Count; if (faceIndex < 0 || faceIndex >= numFaces) throw new Exception("faceIndex out of range"); return SurfaceNormal(faces[faceIndex]); } /// /// Duplicates a PrimMesh object. All object properties are copied by value, including lists. /// /// public PrimMesh Copy() { var copy = new PrimMesh(sides, profileStart, profileEnd, hollow, hollowSides) { twistBegin = twistBegin, twistEnd = twistEnd, topShearX = topShearX, topShearY = topShearY, pathCutBegin = pathCutBegin, pathCutEnd = pathCutEnd, dimpleBegin = dimpleBegin, dimpleEnd = dimpleEnd, skew = skew, holeSizeX = holeSizeX, holeSizeY = holeSizeY, taperX = taperX, taperY = taperY, radius = radius, revolutions = revolutions, stepsPerRevolution = stepsPerRevolution, calcVertexNormals = calcVertexNormals, normalsProcessed = normalsProcessed, viewerMode = viewerMode, numPrimFaces = numPrimFaces, errorMessage = errorMessage, coords = new List(coords), faces = new List(faces), viewerFaces = new List(viewerFaces), normals = new List(normals) }; return copy; } /// /// Calculate surface normals for all of the faces in the list of faces in this mesh /// public void CalcNormals() { if (normalsProcessed) return; normalsProcessed = true; var numFaces = faces.Count; if (!calcVertexNormals) normals = new List(); for (var i = 0; i < numFaces; i++) { var face = faces[i]; normals.Add(SurfaceNormal(i).Normalize()); var normIndex = normals.Count - 1; face.n1 = normIndex; face.n2 = normIndex; face.n3 = normIndex; faces[i] = face; } } /// /// Adds a value to each XYZ vertex coordinate in the mesh /// /// /// /// public void AddPos(float x, float y, float z) { int i; var numVerts = coords.Count; Coord vert; for (i = 0; i < numVerts; i++) { vert = coords[i]; vert.X += x; vert.Y += y; vert.Z += z; coords[i] = vert; } if (viewerFaces != null) { var numViewerFaces = viewerFaces.Count; for (i = 0; i < numViewerFaces; i++) { var v = viewerFaces[i]; v.AddPos(x, y, z); viewerFaces[i] = v; } } } /// /// Rotates the mesh /// /// public void AddRot(Quat q) { int i; var numVerts = coords.Count; for (i = 0; i < numVerts; i++) coords[i] *= q; if (normals != null) { var numNormals = normals.Count; for (i = 0; i < numNormals; i++) normals[i] *= q; } if (viewerFaces != null) { var numViewerFaces = viewerFaces.Count; for (i = 0; i < numViewerFaces; i++) { var v = viewerFaces[i]; v.v1 *= q; v.v2 *= q; v.v3 *= q; v.n1 *= q; v.n2 *= q; v.n3 *= q; viewerFaces[i] = v; } } } #if VERTEX_INDEXER public VertexIndexer GetVertexIndexer() { if (viewerMode && viewerFaces.Count > 0) return new VertexIndexer(this); return null; } #endif /// /// Scales the mesh /// /// /// /// public void Scale(float x, float y, float z) { int i; var numVerts = coords.Count; //Coord vert; var m = new Coord(x, y, z); for (i = 0; i < numVerts; i++) coords[i] *= m; if (viewerFaces != null) { var numViewerFaces = viewerFaces.Count; for (i = 0; i < numViewerFaces; i++) { var v = viewerFaces[i]; v.v1 *= m; v.v2 *= m; v.v3 *= m; viewerFaces[i] = v; } } } /// /// Dumps the mesh to a Blender compatible "Raw" format file /// /// /// /// public void DumpRaw(string path, string name, string title) { if (path == null) return; var fileName = name + "_" + title + ".raw"; var completePath = System.IO.Path.Combine(path, fileName); var sw = new StreamWriter(completePath); for (var i = 0; i < faces.Count; i++) { var s = coords[faces[i].v1].ToString(); s += " " + coords[faces[i].v2]; s += " " + coords[faces[i].v3]; sw.WriteLine(s); } sw.Close(); } } }