// // kqueue_reactor.hpp // ~~~~~~~~~~~~~~~~~~ // // Copyright (c) 2003-2005 Christopher M. Kohlhoff (chris at kohlhoff dot com) // Copyright (c) 2005 Stefan Arentz (stefan at soze dot com) // // Distributed under the Boost Software License, Version 1.0. (See accompanying // file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) // #ifndef BOOST_ASIO_DETAIL_KQUEUE_REACTOR_HPP #define BOOST_ASIO_DETAIL_KQUEUE_REACTOR_HPP #if defined(_MSC_VER) && (_MSC_VER >= 1200) # pragma once #endif // defined(_MSC_VER) && (_MSC_VER >= 1200) #include #if defined(__MACH__) && defined(__APPLE__) // Define this to indicate that epoll is supported on the target platform. #define BOOST_ASIO_HAS_KQUEUE_REACTOR 1 #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace boost { namespace asio { namespace detail { template class kqueue_reactor : private noncopyable { public: // Constructor. template kqueue_reactor(Demuxer&) : mutex_(), kqueue_fd_(do_kqueue_create()), wait_in_progress_(false), interrupter_(), read_op_queue_(), write_op_queue_(), except_op_queue_(), pending_cancellations_(), stop_thread_(false), thread_(0) { // Start the reactor's internal thread only if needed. if (Own_Thread) { boost::asio::detail::signal_blocker sb; thread_ = new boost::asio::detail::thread( bind_handler(&kqueue_reactor::call_run_thread, this)); } // Add the interrupter's descriptor to the kqueue. struct kevent event; EV_SET(&event, interrupter_.read_descriptor(), EVFILT_READ, EV_ADD, 0, 0, 0); ::kevent(kqueue_fd_, &event, 1, 0, 0, 0); } // Destructor. ~kqueue_reactor() { if (thread_) { boost::asio::detail::mutex::scoped_lock lock(mutex_); stop_thread_ = true; lock.unlock(); interrupter_.interrupt(); thread_->join(); delete thread_; } close(kqueue_fd_); } // Start a new read operation. The handler object will be invoked when the // given descriptor is ready to be read, or an error has occurred. template void start_read_op(socket_type descriptor, Handler handler) { boost::asio::detail::mutex::scoped_lock lock(mutex_); if (read_op_queue_.enqueue_operation(descriptor, handler)) { struct kevent event; EV_SET(&event, descriptor, EVFILT_READ, EV_ADD, 0, 0, 0); if (::kevent(kqueue_fd_, &event, 1, 0, 0, 0) == -1) { int error = errno; read_op_queue_.dispatch_all_operations(descriptor, error); } } } // Start a new write operation. The handler object will be invoked when the // given descriptor is ready to be written, or an error has occurred. template void start_write_op(socket_type descriptor, Handler handler) { boost::asio::detail::mutex::scoped_lock lock(mutex_); if (write_op_queue_.enqueue_operation(descriptor, handler)) { struct kevent event; EV_SET(&event, descriptor, EVFILT_WRITE, EV_ADD, 0, 0, 0); if (::kevent(kqueue_fd_, &event, 1, 0, 0, 0) == -1) { int error = errno; write_op_queue_.dispatch_all_operations(descriptor, error); } } } // Start a new exception operation. The handler object will be invoked when // the given descriptor has exception information, or an error has occurred. template void start_except_op(socket_type descriptor, Handler handler) { boost::asio::detail::mutex::scoped_lock lock(mutex_); if (except_op_queue_.enqueue_operation(descriptor, handler)) { struct kevent event; if (read_op_queue_.has_operation(descriptor)) EV_SET(&event, descriptor, EVFILT_READ, EV_ADD, 0, 0, 0); else EV_SET(&event, descriptor, EVFILT_READ, EV_ADD, EV_OOBAND, 0, 0); if (::kevent(kqueue_fd_, &event, 1, 0, 0, 0) == -1) { int error = errno; except_op_queue_.dispatch_all_operations(descriptor, error); } } } // Start new write and exception operations. The handler object will be // invoked when the given descriptor is ready for writing or has exception // information available, or an error has occurred. template void start_write_and_except_ops(socket_type descriptor, Handler handler) { boost::asio::detail::mutex::scoped_lock lock(mutex_); if (write_op_queue_.enqueue_operation(descriptor, handler)) { struct kevent event; EV_SET(&event, descriptor, EVFILT_WRITE, EV_ADD, 0, 0, 0); if (::kevent(kqueue_fd_, &event, 1, 0, 0, 0) == -1) { int error = errno; write_op_queue_.dispatch_all_operations(descriptor, error); } } if (except_op_queue_.enqueue_operation(descriptor, handler)) { struct kevent event; if (read_op_queue_.has_operation(descriptor)) EV_SET(&event, descriptor, EVFILT_READ, EV_ADD, 0, 0, 0); else EV_SET(&event, descriptor, EVFILT_READ, EV_ADD, EV_OOBAND, 0, 0); if (::kevent(kqueue_fd_, &event, 1, 0, 0, 0) == -1) { int error = errno; except_op_queue_.dispatch_all_operations(descriptor, error); write_op_queue_.dispatch_all_operations(descriptor, error); } } } // Cancel all operations associated with the given descriptor. The // handlers associated with the descriptor will be invoked with the // operation_aborted error. void cancel_ops(socket_type descriptor) { boost::asio::detail::mutex::scoped_lock lock(mutex_); cancel_ops_unlocked(descriptor); } // Enqueue cancellation of all operations associated with the given // descriptor. The handlers associated with the descriptor will be invoked // with the operation_aborted error. This function does not acquire the // select_reactor's mutex, and so should only be used from within a reactor // handler. void enqueue_cancel_ops_unlocked(socket_type descriptor) { pending_cancellations_.insert( pending_cancellations_map::value_type(descriptor, true)); } // Cancel any operations that are running against the descriptor and remove // its registration from the reactor. void close_descriptor(socket_type descriptor) { boost::asio::detail::mutex::scoped_lock lock(mutex_); // Remove the descriptor from kqueue. struct kevent event[2]; EV_SET(&event[0], descriptor, EVFILT_READ, EV_DELETE, 0, 0, 0); EV_SET(&event[1], descriptor, EVFILT_WRITE, EV_DELETE, 0, 0, 0); ::kevent(kqueue_fd_, event, 2, 0, 0, 0); // Cancel any outstanding operations associated with the descriptor. cancel_ops_unlocked(descriptor); } // Schedule a timer to expire at the specified absolute time. The // do_operation function of the handler object will be invoked when the timer // expires. Returns a token that may be used for cancelling the timer, but it // is not valid after the timer expires. template void schedule_timer(const boost::posix_time::ptime& time, Handler handler, void* token) { boost::asio::detail::mutex::scoped_lock lock(mutex_); if (timer_queue_.enqueue_timer(time, handler, token)) interrupter_.interrupt(); } // Cancel the timer associated with the given token. Returns the number of // handlers that have been posted or dispatched. std::size_t cancel_timer(void* token) { boost::asio::detail::mutex::scoped_lock lock(mutex_); return timer_queue_.cancel_timer(token); } private: friend class task_demuxer_service >; // Reset the select loop before a new run. void reset() { boost::asio::detail::mutex::scoped_lock lock(mutex_); stop_thread_ = false; interrupter_.reset(); } // Run the epoll loop. void run() { boost::asio::detail::mutex::scoped_lock lock(mutex_); // Dispatch any operation cancellations that were made while the select // loop was not running. read_op_queue_.dispatch_cancellations(); write_op_queue_.dispatch_cancellations(); except_op_queue_.dispatch_cancellations(); bool stop = false; while (!stop && !stop_thread_) { timespec timeout_buf; timespec* timeout = get_timeout(timeout_buf); wait_in_progress_ = true; lock.unlock(); // Block on the kqueue descriptor. struct kevent events[128]; int num_events = kevent(kqueue_fd_, 0, 0, events, 128, timeout); lock.lock(); wait_in_progress_ = false; // Block signals while dispatching operations. boost::asio::detail::signal_blocker sb; // Dispatch the waiting events. for (int i = 0; i < num_events; ++i) { int descriptor = events[i].ident; if (descriptor == interrupter_.read_descriptor()) { stop = interrupter_.reset(); } else if (events[i].filter == EVFILT_READ) { // Dispatch operations associated with the descriptor. bool more_reads = false; bool more_except = false; if (events[i].flags & EV_ERROR) { int error = events[i].data; except_op_queue_.dispatch_all_operations(descriptor, error); read_op_queue_.dispatch_all_operations(descriptor, error); } else if (events[i].flags & EV_OOBAND) { more_except = except_op_queue_.dispatch_operation(descriptor, 0); if (events[i].data > 0) more_reads = read_op_queue_.dispatch_operation(descriptor, 0); else more_reads = read_op_queue_.has_operation(descriptor); } else { more_reads = read_op_queue_.dispatch_operation(descriptor, 0); more_except = except_op_queue_.has_operation(descriptor); } // Update the descriptor in the kqueue. struct kevent event; if (more_reads) EV_SET(&event, descriptor, EVFILT_READ, EV_ADD, 0, 0, 0); else if (more_except) EV_SET(&event, descriptor, EVFILT_READ, EV_ADD, EV_OOBAND, 0, 0); else EV_SET(&event, descriptor, EVFILT_READ, EV_DELETE, 0, 0, 0); if (::kevent(kqueue_fd_, &event, 1, 0, 0, 0) == -1) { int error = errno; except_op_queue_.dispatch_all_operations(descriptor, error); read_op_queue_.dispatch_all_operations(descriptor, error); } } else if (events[i].filter == EVFILT_WRITE) { // Dispatch operations associated with the descriptor. bool more_writes = false; if (events[i].flags & EV_ERROR) { int error = events[i].data; write_op_queue_.dispatch_all_operations(descriptor, error); } else { more_writes = write_op_queue_.dispatch_operation(descriptor, 0); } // Update the descriptor in the kqueue. struct kevent event; if (more_writes) EV_SET(&event, descriptor, EVFILT_WRITE, EV_ADD, 0, 0, 0); else EV_SET(&event, descriptor, EVFILT_WRITE, EV_DELETE, 0, 0, 0); if (::kevent(kqueue_fd_, &event, 1, 0, 0, 0) == -1) { int error = errno; write_op_queue_.dispatch_all_operations(descriptor, error); } } } read_op_queue_.dispatch_cancellations(); write_op_queue_.dispatch_cancellations(); except_op_queue_.dispatch_cancellations(); timer_queue_.dispatch_timers( boost::posix_time::microsec_clock::universal_time()); // Issue any pending cancellations. pending_cancellations_map::iterator i = pending_cancellations_.begin(); while (i != pending_cancellations_.end()) { cancel_ops_unlocked(i->first); ++i; } pending_cancellations_.clear(); } } // Run the select loop in the thread. void run_thread() { boost::asio::detail::mutex::scoped_lock lock(mutex_); while (!stop_thread_) { lock.unlock(); run(); lock.lock(); } } // Entry point for the select loop thread. static void call_run_thread(kqueue_reactor* reactor) { reactor->run_thread(); } // Interrupt the select loop. void interrupt() { interrupter_.interrupt(); } // Create the kqueue file descriptor. Throws an exception if the descriptor // cannot be created. static int do_kqueue_create() { int fd = kqueue(); if (fd == -1) { system_exception e("kqueue", errno); boost::throw_exception(e); } return fd; } // Get the timeout value for the kevent call. timespec* get_timeout(timespec& ts) { if (timer_queue_.empty()) return 0; boost::posix_time::ptime now = boost::posix_time::microsec_clock::universal_time(); boost::posix_time::ptime earliest_timer; timer_queue_.get_earliest_time(earliest_timer); if (now < earliest_timer) { boost::posix_time::time_duration timeout = earliest_timer - now; ts.tv_sec = timeout.total_seconds(); ts.tv_nsec = timeout.total_nanoseconds() % 1000000000; } else { ts.tv_sec = 0; ts.tv_nsec = 0; } return &ts; } // Cancel all operations associated with the given descriptor. The do_cancel // function of the handler objects will be invoked. This function does not // acquire the epoll_reactor's mutex. void cancel_ops_unlocked(socket_type descriptor) { bool interrupt = read_op_queue_.cancel_operations(descriptor); interrupt = write_op_queue_.cancel_operations(descriptor) || interrupt; interrupt = except_op_queue_.cancel_operations(descriptor) || interrupt; if (interrupt) interrupter_.interrupt(); } // Mutex to protect access to internal data. boost::asio::detail::mutex mutex_; // The epoll file descriptor. int kqueue_fd_; // Whether the kqueue wait call is currently in progress bool wait_in_progress_; // The interrupter is used to break a blocking epoll_wait call. select_interrupter interrupter_; // The queue of read operations. reactor_op_queue read_op_queue_; // The queue of write operations. reactor_op_queue write_op_queue_; // The queue of except operations. reactor_op_queue except_op_queue_; // The queue of timers. reactor_timer_queue timer_queue_; // The type for a map of descriptors to be cancelled. typedef hash_map pending_cancellations_map; // The map of descriptors that are pending cancellation. pending_cancellations_map pending_cancellations_; // Does the reactor loop thread need to stop. bool stop_thread_; // The thread that is running the reactor loop. boost::asio::detail::thread* thread_; }; } // namespace detail } // namespace asio } // namespace boost #endif // defined(__MACH__) && defined(__APPLE__) #include #endif // BOOST_ASIO_DETAIL_KQUEUE_REACTOR_HPP