/* * CVS identifier: * * $Id: StdQuantizer.java,v 1.14 2001/09/20 12:41:52 grosbois Exp $ * * Class: StdQuantizer * * Description: Scalar deadzone quantizer of integer or float * data. * * Mergerd from StdQuantizerInt and * StdQuantizerFloat from Joel Askelof. * * * COPYRIGHT: * * This software module was originally developed by Raphaël Grosbois and * Diego Santa Cruz (Swiss Federal Institute of Technology-EPFL); Joel * Askelöf (Ericsson Radio Systems AB); and Bertrand Berthelot, David * Bouchard, Félix Henry, Gerard Mozelle and Patrice Onno (Canon Research * Centre France S.A) in the course of development of the JPEG2000 * standard as specified by ISO/IEC 15444 (JPEG 2000 Standard). This * software module is an implementation of a part of the JPEG 2000 * Standard. Swiss Federal Institute of Technology-EPFL, Ericsson Radio * Systems AB and Canon Research Centre France S.A (collectively JJ2000 * Partners) agree not to assert against ISO/IEC and users of the JPEG * 2000 Standard (Users) any of their rights under the copyright, not * including other intellectual property rights, for this software module * with respect to the usage by ISO/IEC and Users of this software module * or modifications thereof for use in hardware or software products * claiming conformance to the JPEG 2000 Standard. Those intending to use * this software module in hardware or software products are advised that * their use may infringe existing patents. The original developers of * this software module, JJ2000 Partners and ISO/IEC assume no liability * for use of this software module or modifications thereof. No license * or right to this software module is granted for non JPEG 2000 Standard * conforming products. JJ2000 Partners have full right to use this * software module for his/her own purpose, assign or donate this * software module to any third party and to inhibit third parties from * using this software module for non JPEG 2000 Standard conforming * products. This copyright notice must be included in all copies or * derivative works of this software module. * * Copyright (c) 1999/2000 JJ2000 Partners. * */ using System; using CSJ2K.j2k.codestream.writer; using CSJ2K.j2k.wavelet.analysis; using CSJ2K.j2k.quantization; using CSJ2K.j2k.wavelet; using CSJ2K.j2k.encoder; using CSJ2K.j2k.image; using CSJ2K.j2k; namespace CSJ2K.j2k.quantization.quantizer { /// This class implements scalar quantization of integer or floating-point /// valued source data. The source data is the wavelet transformed image data /// and the output is the quantized wavelet coefficients represented in /// sign-magnitude (see below). /// ///

Sign magnitude representation is used (instead of two's complement) for /// the output data. The most significant bit is used for the sign (0 if /// positive, 1 if negative). Then the magnitude of the quantized coefficient /// is stored in the next M most significat bits. The rest of the bits (least /// significant bits) can contain a fractional value of the quantized /// coefficient. This fractional value is not to be coded by the entropy /// coder. However, it can be used to compute rate-distortion measures with /// greater precision.

/// ///

The value of M is determined for each subband as the sum of the number /// of guard bits G and the nominal range of quantized wavelet coefficients in /// the corresponding subband (Rq), minus 1:

/// ///

M = G + Rq -1

/// ///

The value of G should be the same for all subbands. The value of Rq /// depends on the quantization step size, the nominal range of the component /// before the wavelet transform and the analysis gain of the subband (see /// Subband).

/// ///

The blocks of data that are requested should not cross subband /// boundaries.

/// ///
/// /// /// /// /// /// public class StdQuantizer:Quantizer { /// Returns the quantization type spec object associated to the quantizer. /// /// /// The quantization type spec /// /// virtual public QuantTypeSpec QuantTypeSpec { get { return qts; } } /// The number of mantissa bits for the quantization steps public const int QSTEP_MANTISSA_BITS = 11; /// The number of exponent bits for the quantization steps // NOTE: formulas in 'convertFromExpMantissa()' and // 'convertToExpMantissa()' methods do not support more than 5 bits. public const int QSTEP_EXPONENT_BITS = 5; /// The maximum value of the mantissa for the quantization steps //UPGRADE_NOTE: Final was removed from the declaration of 'QSTEP_MAX_MANTISSA '. "ms-help://MS.VSCC.v80/dv_commoner/local/redirect.htm?index='!DefaultContextWindowIndex'&keyword='jlca1003'" public static readonly int QSTEP_MAX_MANTISSA = (1 << QSTEP_MANTISSA_BITS) - 1; /// The maximum value of the exponent for the quantization steps //UPGRADE_NOTE: Final was removed from the declaration of 'QSTEP_MAX_EXPONENT '. "ms-help://MS.VSCC.v80/dv_commoner/local/redirect.htm?index='!DefaultContextWindowIndex'&keyword='jlca1003'" public static readonly int QSTEP_MAX_EXPONENT = (1 << QSTEP_EXPONENT_BITS) - 1; /// Natural log of 2, used as a convenience variable private static double log2 = System.Math.Log(2); /// The quantization type specifications private QuantTypeSpec qts; /// The quantization step size specifications private QuantStepSizeSpec qsss; /// The guard bits specifications private GuardBitsSpec gbs; /// The 'CBlkWTDataFloat' object used to request data, used when /// quantizing floating-point data. /// // This variable makes the class thread unsafe, but it avoids allocating // new objects for code-block that is quantized. private CBlkWTDataFloat infblk; /// Initializes the source of wavelet transform coefficients. The /// constructor takes information on whether the quantizer is in /// reversible, derived or expounded mode. If the quantizer is reversible /// the value of 'derived' is ignored. If the source data is not integer /// (int) then the quantizer can not be reversible. /// ///

After initializing member attributes, getAnSubbandTree is called for /// all components setting the 'stepWMSE' for all subbands in the current /// tile.

/// ///
/// The source of wavelet transform coefficients. /// /// /// The encoder specifications /// /// public StdQuantizer(CBlkWTDataSrc src, EncoderSpecs encSpec):base(src) { qts = encSpec.qts; qsss = encSpec.qsss; gbs = encSpec.gbs; } /// Returns the number of guard bits used by this quantizer in the given /// tile-component. /// /// /// Tile index /// /// /// Component index /// /// /// The number of guard bits /// /// public override int getNumGuardBits(int t, int c) { return ((System.Int32) gbs.getTileCompVal(t, c)); } /// Returns true if the quantized data is reversible, for the specified /// tile-component. For the quantized data to be reversible it is necessary /// and sufficient that the quantization is reversible. /// /// /// The tile to test for reversibility /// /// /// The component to test for reversibility /// /// /// True if the quantized data is reversible, false if not. /// /// public override bool isReversible(int t, int c) { return qts.isReversible(t, c); } /// Returns true if given tile-component uses derived quantization step /// sizes. /// /// /// Tile index /// /// /// Component index /// /// /// True if derived /// /// public override bool isDerived(int t, int c) { return qts.isDerived(t, c); } /// Returns the next code-block in the current tile for the specified /// component, as a copy (see below). The order in which code-blocks are /// returned is not specified. However each code-block is returned only /// once and all code-blocks will be returned if the method is called 'N' /// times, where 'N' is the number of code-blocks in the tile. After all /// the code-blocks have been returned for the current tile calls to this /// method will return 'null'. /// ///

When changing the current tile (through 'setTile()' or 'nextTile()') /// this method will always return the first code-block, as if this method /// was never called before for the new current tile.

/// ///

The data returned by this method is always a copy of the /// data. Therfore it can be modified "in place" without any problems after /// being returned. The 'offset' of the returned data is 0, and the 'scanw' /// is the same as the code-block width. See the 'CBlkWTData' class.

/// ///

The 'ulx' and 'uly' members of the returned 'CBlkWTData' object /// contain the coordinates of the top-left corner of the block, with /// respect to the tile, not the subband.

/// ///
/// The component for which to return the next code-block. /// /// /// If non-null this object will be used to return the new /// code-block. If null a new one will be allocated and returned. If the /// "data" array of the object is non-null it will be reused, if possible, /// to return the data. /// /// /// The next code-block in the current tile for component 'n', or /// null if all code-blocks for the current tile have been returned. /// /// /// /// /// public override CBlkWTData getNextCodeBlock(int c, CBlkWTData cblk) { return getNextInternCodeBlock(c, cblk); } /// Returns the next code-block in the current tile for the specified /// component. The order in which code-blocks are returned is not /// specified. However each code-block is returned only once and all /// code-blocks will be returned if the method is called 'N' times, where /// 'N' is the number of code-blocks in the tile. After all the code-blocks /// have been returned for the current tile calls to this method will /// return 'null'. /// ///

When changing the current tile (through 'setTile()' or 'nextTile()') /// this method will always return the first code-block, as if this method /// was never called before for the new current tile.

/// ///

The data returned by this method can be the data in the internal /// buffer of this object, if any, and thus can not be modified by the /// caller. The 'offset' and 'scanw' of the returned data can be /// arbitrary. See the 'CBlkWTData' class.

/// ///

The 'ulx' and 'uly' members of the returned 'CBlkWTData' object /// contain the coordinates of the top-left corner of the block, with /// respect to the tile, not the subband.

/// ///
/// The component for which to return the next code-block. /// /// /// If non-null this object will be used to return the new /// code-block. If null a new one will be allocated and returned. If the /// "data" array of the object is non-null it will be reused, if possible, /// to return the data. /// /// /// The next code-block in the current tile for component 'n', or /// null if all code-blocks for the current tile have been returned. /// /// /// /// /// public override CBlkWTData getNextInternCodeBlock(int c, CBlkWTData cblk) { // NOTE: this method is declared final since getNextCodeBlock() relies // on this particular implementation int k, j; int tmp, shiftBits, jmin; int w, h; int[] outarr; float[] infarr = null; CBlkWTDataFloat infblk; float invstep; // The inverse of the quantization step size bool intq; // flag for quantizig ints SubbandAn sb; float stepUDR; // The quantization step size (for a dynamic // range of 1, or unit) int g = ((System.Int32) gbs.getTileCompVal(tIdx, c)); // Are we quantizing ints or floats? intq = (src.getDataType(tIdx, c) == DataBlk.TYPE_INT); // Check that we have an output object if (cblk == null) { cblk = new CBlkWTDataInt(); } // Cache input float code-block infblk = this.infblk; // Get data to quantize. When quantizing int data 'cblk' is used to // get the data to quantize and to return the quantized data as well, // that's why 'getNextCodeBlock()' is used. This can not be done when // quantizing float data because of the different data types, that's // why 'getNextInternCodeBlock()' is used in that case. if (intq) { // Source data is int cblk = src.getNextCodeBlock(c, cblk); if (cblk == null) { return null; // No more code-blocks in current tile for comp. } // Input and output arrays are the same (for "in place" quant.) outarr = (int[]) cblk.Data; } else { // Source data is float // Can not use 'cblk' to get float data, use 'infblk' infblk = (CBlkWTDataFloat) src.getNextInternCodeBlock(c, infblk); if (infblk == null) { // Release buffer from infblk: this enables to garbage collect // the big buffer when we are done with last code-block of // component. this.infblk.Data = null; return null; // No more code-blocks in current tile for comp. } this.infblk = infblk; // Save local cache infarr = (float[]) infblk.Data; // Get output data array and check that there is memory to put the // quantized coeffs in outarr = (int[]) cblk.Data; if (outarr == null || outarr.Length < infblk.w * infblk.h) { outarr = new int[infblk.w * infblk.h]; cblk.Data = outarr; } cblk.m = infblk.m; cblk.n = infblk.n; cblk.sb = infblk.sb; cblk.ulx = infblk.ulx; cblk.uly = infblk.uly; cblk.w = infblk.w; cblk.h = infblk.h; cblk.wmseScaling = infblk.wmseScaling; cblk.offset = 0; cblk.scanw = cblk.w; } // Cache width, height and subband of code-block w = cblk.w; h = cblk.h; sb = cblk.sb; if (isReversible(tIdx, c)) { // Reversible only for int data cblk.magbits = g - 1 + src.getNomRangeBits(c) + sb.anGainExp; shiftBits = 31 - cblk.magbits; // Update the convertFactor field cblk.convertFactor = (1 << shiftBits); // Since we used getNextCodeBlock() to get the int data then // 'offset' is 0 and 'scanw' is the width of the code-block The // input and output arrays are the same (i.e. "in place") for (j = w * h - 1; j >= 0; j--) { tmp = (outarr[j] << shiftBits); outarr[j] = ((tmp < 0)?(1 << 31) | (- tmp):tmp); } } else { // Non-reversible, use step size //UPGRADE_TODO: The equivalent in .NET for method 'java.lang.Float.floatValue' may return a different value. "ms-help://MS.VSCC.v80/dv_commoner/local/redirect.htm?index='!DefaultContextWindowIndex'&keyword='jlca1043'" float baseStep = (float) ((System.Single) qsss.getTileCompVal(tIdx, c)); // Calculate magnitude bits and quantization step size if (isDerived(tIdx, c)) { //UPGRADE_WARNING: Data types in Visual C# might be different. Verify the accuracy of narrowing conversions. "ms-help://MS.VSCC.v80/dv_commoner/local/redirect.htm?index='!DefaultContextWindowIndex'&keyword='jlca1042'" cblk.magbits = g - 1 + sb.level - (int) System.Math.Floor(System.Math.Log(baseStep) / log2); stepUDR = baseStep / (1 << sb.level); } else { //UPGRADE_WARNING: Data types in Visual C# might be different. Verify the accuracy of narrowing conversions. "ms-help://MS.VSCC.v80/dv_commoner/local/redirect.htm?index='!DefaultContextWindowIndex'&keyword='jlca1042'" cblk.magbits = g - 1 - (int) System.Math.Floor(System.Math.Log(baseStep / (sb.l2Norm * (1 << sb.anGainExp))) / log2); stepUDR = baseStep / (sb.l2Norm * (1 << sb.anGainExp)); } shiftBits = 31 - cblk.magbits; // Calculate step that decoder will get and use that one. stepUDR = convertFromExpMantissa(convertToExpMantissa(stepUDR)); invstep = 1.0f / ((1L << (src.getNomRangeBits(c) + sb.anGainExp)) * stepUDR); // Normalize to magnitude bits (output fractional point) invstep *= (1 << (shiftBits - src.getFixedPoint(c))); // Update convertFactor and stepSize fields cblk.convertFactor = invstep; cblk.stepSize = ((1L << (src.getNomRangeBits(c) + sb.anGainExp)) * stepUDR); if (intq) { // Quantizing int data // Since we used getNextCodeBlock() to get the int data then // 'offset' is 0 and 'scanw' is the width of the code-block // The input and output arrays are the same (i.e. "in place") for (j = w * h - 1; j >= 0; j--) { //UPGRADE_WARNING: Data types in Visual C# might be different. Verify the accuracy of narrowing conversions. "ms-help://MS.VSCC.v80/dv_commoner/local/redirect.htm?index='!DefaultContextWindowIndex'&keyword='jlca1042'" tmp = (int) (outarr[j] * invstep); outarr[j] = ((tmp < 0)?(1 << 31) | (- tmp):tmp); } } else { // Quantizing float data for (j = w * h - 1, k = infblk.offset + (h - 1) * infblk.scanw + w - 1, jmin = w * (h - 1); j >= 0; jmin -= w) { for (; j >= jmin; k--, j--) { //UPGRADE_WARNING: Data types in Visual C# might be different. Verify the accuracy of narrowing conversions. "ms-help://MS.VSCC.v80/dv_commoner/local/redirect.htm?index='!DefaultContextWindowIndex'&keyword='jlca1042'" tmp = (int) (infarr[k] * invstep); outarr[j] = ((tmp < 0)?(1 << 31) | (- tmp):tmp); } // Jump to beggining of previous line in input k -= (infblk.scanw - w); } } } // Return the quantized code-block return cblk; } /// Calculates the parameters of the SubbandAn objects that depend on the /// Quantizer. The 'stepWMSE' field is calculated for each subband which is /// a leaf in the tree rooted at 'sb', for the specified component. The /// subband tree 'sb' must be the one for the component 'n'. /// /// /// The root of the subband tree. /// /// /// The component index /// /// /// /// /// protected internal override void calcSbParams(SubbandAn sb, int c) { float baseStep; if (sb.stepWMSE > 0f) // parameters already calculated return ; if (!sb.isNode) { if (isReversible(tIdx, c)) { //UPGRADE_WARNING: Data types in Visual C# might be different. Verify the accuracy of narrowing conversions. "ms-help://MS.VSCC.v80/dv_commoner/local/redirect.htm?index='!DefaultContextWindowIndex'&keyword='jlca1042'" sb.stepWMSE = (float) System.Math.Pow(2, - (src.getNomRangeBits(c) << 1)) * sb.l2Norm * sb.l2Norm; } else { //UPGRADE_TODO: The equivalent in .NET for method 'java.lang.Float.floatValue' may return a different value. "ms-help://MS.VSCC.v80/dv_commoner/local/redirect.htm?index='!DefaultContextWindowIndex'&keyword='jlca1043'" baseStep = (float) ((System.Single) qsss.getTileCompVal(tIdx, c)); if (isDerived(tIdx, c)) { //UPGRADE_WARNING: Data types in Visual C# might be different. Verify the accuracy of narrowing conversions. "ms-help://MS.VSCC.v80/dv_commoner/local/redirect.htm?index='!DefaultContextWindowIndex'&keyword='jlca1042'" sb.stepWMSE = baseStep * baseStep * (float) System.Math.Pow(2, (sb.anGainExp - sb.level) << 1) * sb.l2Norm * sb.l2Norm; } else { sb.stepWMSE = baseStep * baseStep; } } } else { calcSbParams((SubbandAn) sb.LL, c); calcSbParams((SubbandAn) sb.HL, c); calcSbParams((SubbandAn) sb.LH, c); calcSbParams((SubbandAn) sb.HH, c); sb.stepWMSE = 1f; // Signal that we already calculated this branch } } /// Converts the floating point value to its exponent-mantissa /// representation. The mantissa occupies the 11 least significant bits /// (bits 10-0), and the exponent the previous 5 bits (bits 15-11). /// /// /// The quantization step, normalized to a dynamic range of 1. /// /// /// The exponent mantissa representation of the step. /// /// public static int convertToExpMantissa(float step) { int exp; //UPGRADE_WARNING: Data types in Visual C# might be different. Verify the accuracy of narrowing conversions. "ms-help://MS.VSCC.v80/dv_commoner/local/redirect.htm?index='!DefaultContextWindowIndex'&keyword='jlca1042'" exp = (int) System.Math.Ceiling((- System.Math.Log(step)) / log2); if (exp > QSTEP_MAX_EXPONENT) { // If step size is too small for exponent representation, use the // minimum, which is exponent QSTEP_MAX_EXPONENT and mantissa 0. return (QSTEP_MAX_EXPONENT << QSTEP_MANTISSA_BITS); } // NOTE: this formula does not support more than 5 bits for the // exponent, otherwise (-1< Converts the exponent-mantissa representation to its floating-point /// value. The mantissa occupies the 11 least significant bits (bits 10-0), /// and the exponent the previous 5 bits (bits 15-11). /// /// /// The exponent-mantissa representation of the step. /// /// /// The floating point representation of the step, normalized to a /// dynamic range of 1. /// /// private static float convertFromExpMantissa(int ems) { // NOTE: this formula does not support more than 5 bits for the // exponent, otherwise (-1<> QSTEP_MANTISSA_BITS) & QSTEP_MAX_EXPONENT)); } /// Returns the maximum number of magnitude bits in any subband of the /// current tile. /// /// /// the component number /// /// /// The maximum number of magnitude bits in all subbands of the /// current tile. /// /// public override int getMaxMagBits(int c) { Subband sb = getAnSubbandTree(tIdx, c); if (isReversible(tIdx, c)) { return getMaxMagBitsRev(sb, c); } else { if (isDerived(tIdx, c)) { return getMaxMagBitsDerived(sb, tIdx, c); } else { return getMaxMagBitsExpounded(sb, tIdx, c); } } } /// Returns the maximum number of magnitude bits in any subband of the /// current tile if reversible quantization is used /// /// /// The root of the subband tree of the current tile /// /// /// the component number /// /// /// The highest number of magnitude bit-planes /// /// private int getMaxMagBitsRev(Subband sb, int c) { int tmp, max = 0; int g = ((System.Int32) gbs.getTileCompVal(tIdx, c)); if (!sb.isNode) return g - 1 + src.getNomRangeBits(c) + sb.anGainExp; max = getMaxMagBitsRev(sb.LL, c); tmp = getMaxMagBitsRev(sb.LH, c); if (tmp > max) max = tmp; tmp = getMaxMagBitsRev(sb.HL, c); if (tmp > max) max = tmp; tmp = getMaxMagBitsRev(sb.HH, c); if (tmp > max) max = tmp; return max; } /// Returns the maximum number of magnitude bits in any subband in the /// given tile-component if derived quantization is used /// /// /// The root of the subband tree of the tile-component /// /// /// Tile index /// /// /// Component index /// /// /// The highest number of magnitude bit-planes /// /// private int getMaxMagBitsDerived(Subband sb, int t, int c) { int tmp, max = 0; int g = ((System.Int32) gbs.getTileCompVal(t, c)); if (!sb.isNode) { //UPGRADE_TODO: The equivalent in .NET for method 'java.lang.Float.floatValue' may return a different value. "ms-help://MS.VSCC.v80/dv_commoner/local/redirect.htm?index='!DefaultContextWindowIndex'&keyword='jlca1043'" float baseStep = (float) ((System.Single) qsss.getTileCompVal(t, c)); //UPGRADE_WARNING: Data types in Visual C# might be different. Verify the accuracy of narrowing conversions. "ms-help://MS.VSCC.v80/dv_commoner/local/redirect.htm?index='!DefaultContextWindowIndex'&keyword='jlca1042'" return g - 1 + sb.level - (int) System.Math.Floor(System.Math.Log(baseStep) / log2); } max = getMaxMagBitsDerived(sb.LL, t, c); tmp = getMaxMagBitsDerived(sb.LH, t, c); if (tmp > max) max = tmp; tmp = getMaxMagBitsDerived(sb.HL, t, c); if (tmp > max) max = tmp; tmp = getMaxMagBitsDerived(sb.HH, t, c); if (tmp > max) max = tmp; return max; } /// Returns the maximum number of magnitude bits in any subband in the /// given tile-component if expounded quantization is used /// /// /// The root of the subband tree of the tile-component /// /// /// Tile index /// /// /// Component index /// /// /// The highest number of magnitude bit-planes /// /// private int getMaxMagBitsExpounded(Subband sb, int t, int c) { int tmp, max = 0; int g = ((System.Int32) gbs.getTileCompVal(t, c)); if (!sb.isNode) { //UPGRADE_TODO: The equivalent in .NET for method 'java.lang.Float.floatValue' may return a different value. "ms-help://MS.VSCC.v80/dv_commoner/local/redirect.htm?index='!DefaultContextWindowIndex'&keyword='jlca1043'" float baseStep = (float) ((System.Single) qsss.getTileCompVal(t, c)); //UPGRADE_WARNING: Data types in Visual C# might be different. Verify the accuracy of narrowing conversions. "ms-help://MS.VSCC.v80/dv_commoner/local/redirect.htm?index='!DefaultContextWindowIndex'&keyword='jlca1042'" return g - 1 - (int) System.Math.Floor(System.Math.Log(baseStep / (((SubbandAn) sb).l2Norm * (1 << sb.anGainExp))) / log2); } max = getMaxMagBitsExpounded(sb.LL, t, c); tmp = getMaxMagBitsExpounded(sb.LH, t, c); if (tmp > max) max = tmp; tmp = getMaxMagBitsExpounded(sb.HL, t, c); if (tmp > max) max = tmp; tmp = getMaxMagBitsExpounded(sb.HH, t, c); if (tmp > max) max = tmp; return max; } } }