Files
libremetaverse/PrimMesher/PrimMesher.cs
Cinder Biscuits b58949cc85 Revert "Fix redundant declarations"
This reverts commit 50542975ab.
2019-06-08 18:04:05 -05:00

2327 lines
79 KiB
C#

/*
* Copyright (c) Contributors
* See CONTRIBUTORS.TXT for a full list of copyright holders.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of the OpenSimulator Project nor the
* names of its contributors may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE DEVELOPERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE CONTRIBUTORS BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
using System;
using System.Collections.Generic;
using System.IO;
namespace LibreMetaverse.PrimMesher
{
public struct Quat
{
/// <summary>X value</summary>
public float X;
/// <summary>Y value</summary>
public float Y;
/// <summary>Z value</summary>
public float Z;
/// <summary>W value</summary>
public float W;
public Quat(float x, float y, float z, float w)
{
X = x;
Y = y;
Z = z;
W = w;
}
public Quat(Coord axis, float angle)
{
axis = axis.Normalize();
angle *= 0.5f;
var c = (float) Math.Cos(angle);
var s = (float) Math.Sin(angle);
X = axis.X * s;
Y = axis.Y * s;
Z = axis.Z * s;
W = c;
Normalize();
}
public float Length()
{
return (float) Math.Sqrt(X * X + Y * Y + Z * Z + W * W);
}
public Quat Normalize()
{
const float MAG_THRESHOLD = 0.0000001f;
var mag = Length();
// Catch very small rounding errors when normalizing
if (mag > MAG_THRESHOLD)
{
var oomag = 1f / mag;
X *= oomag;
Y *= oomag;
Z *= oomag;
W *= oomag;
}
else
{
X = 0f;
Y = 0f;
Z = 0f;
W = 1f;
}
return this;
}
public static Quat operator *(Quat q1, Quat q2)
{
var x = q1.W * q2.X + q1.X * q2.W + q1.Y * q2.Z - q1.Z * q2.Y;
var y = q1.W * q2.Y - q1.X * q2.Z + q1.Y * q2.W + q1.Z * q2.X;
var z = q1.W * q2.Z + q1.X * q2.Y - q1.Y * q2.X + q1.Z * q2.W;
var w = q1.W * q2.W - q1.X * q2.X - q1.Y * q2.Y - q1.Z * q2.Z;
return new Quat(x, y, z, w);
}
public override string ToString()
{
return "< X: " + X + ", Y: " + Y + ", Z: " + Z + ", W: " + W + ">";
}
}
public struct Coord
{
public float X;
public float Y;
public float Z;
public Coord(float x, float y, float z)
{
X = x;
Y = y;
Z = z;
}
public float Length()
{
return (float) Math.Sqrt(X * X + Y * Y + Z * Z);
}
public Coord Invert()
{
X = -X;
Y = -Y;
Z = -Z;
return this;
}
public Coord Normalize()
{
const float MAG_THRESHOLD = 0.0000001f;
var mag = Length();
// Catch very small rounding errors when normalizing
if (mag > MAG_THRESHOLD)
{
var oomag = 1.0f / mag;
X *= oomag;
Y *= oomag;
Z *= oomag;
}
else
{
X = 0.0f;
Y = 0.0f;
Z = 0.0f;
}
return this;
}
public override string ToString()
{
return X + " " + Y + " " + Z;
}
public static Coord Cross(Coord c1, Coord c2)
{
return new Coord(
c1.Y * c2.Z - c2.Y * c1.Z,
c1.Z * c2.X - c2.Z * c1.X,
c1.X * c2.Y - c2.X * c1.Y
);
}
public static Coord operator +(Coord v, Coord a)
{
return new Coord(v.X + a.X, v.Y + a.Y, v.Z + a.Z);
}
public static Coord operator *(Coord v, Coord m)
{
return new Coord(v.X * m.X, v.Y * m.Y, v.Z * m.Z);
}
public static Coord operator *(Coord v, Quat q)
{
// From http://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions/transforms/
var c2 = new Coord(0.0f, 0.0f, 0.0f);
c2.X = q.W * q.W * v.X +
2f * q.Y * q.W * v.Z -
2f * q.Z * q.W * v.Y +
q.X * q.X * v.X +
2f * q.Y * q.X * v.Y +
2f * q.Z * q.X * v.Z -
q.Z * q.Z * v.X -
q.Y * q.Y * v.X;
c2.Y =
2f * q.X * q.Y * v.X +
q.Y * q.Y * v.Y +
2f * q.Z * q.Y * v.Z +
2f * q.W * q.Z * v.X -
q.Z * q.Z * v.Y +
q.W * q.W * v.Y -
2f * q.X * q.W * v.Z -
q.X * q.X * v.Y;
c2.Z =
2f * q.X * q.Z * v.X +
2f * q.Y * q.Z * v.Y +
q.Z * q.Z * v.Z -
2f * q.W * q.Y * v.X -
q.Y * q.Y * v.Z +
2f * q.W * q.X * v.Y -
q.X * q.X * v.Z +
q.W * q.W * v.Z;
return c2;
}
}
public struct UVCoord
{
public float U;
public float V;
public UVCoord(float u, float v)
{
U = u;
V = v;
}
public UVCoord Flip()
{
U = 1.0f - U;
V = 1.0f - V;
return this;
}
}
public struct Face
{
public int primFace;
// vertices
public int v1;
public int v2;
public int v3;
//normals
public int n1;
public int n2;
public int n3;
// uvs
public int uv1;
public int uv2;
public int uv3;
public Face(int v1, int v2, int v3)
{
primFace = 0;
this.v1 = v1;
this.v2 = v2;
this.v3 = v3;
n1 = 0;
n2 = 0;
n3 = 0;
uv1 = 0;
uv2 = 0;
uv3 = 0;
}
public Face(int v1, int v2, int v3, int n1, int n2, int n3)
{
primFace = 0;
this.v1 = v1;
this.v2 = v2;
this.v3 = v3;
this.n1 = n1;
this.n2 = n2;
this.n3 = n3;
uv1 = 0;
uv2 = 0;
uv3 = 0;
}
public Coord SurfaceNormal(List<Coord> coordList)
{
var c1 = coordList[v1];
var c2 = coordList[v2];
var c3 = coordList[v3];
var edge1 = new Coord(c2.X - c1.X, c2.Y - c1.Y, c2.Z - c1.Z);
var edge2 = new Coord(c3.X - c1.X, c3.Y - c1.Y, c3.Z - c1.Z);
return Coord.Cross(edge1, edge2).Normalize();
}
}
public struct ViewerFace
{
public int primFaceNumber;
public Coord v1;
public Coord v2;
public Coord v3;
public int coordIndex1;
public int coordIndex2;
public int coordIndex3;
public Coord n1;
public Coord n2;
public Coord n3;
public UVCoord uv1;
public UVCoord uv2;
public UVCoord uv3;
public ViewerFace(int primFaceNumber)
{
this.primFaceNumber = primFaceNumber;
v1 = new Coord();
v2 = new Coord();
v3 = new Coord();
coordIndex1 = coordIndex2 = coordIndex3 = -1; // -1 means not assigned yet
n1 = new Coord();
n2 = new Coord();
n3 = new Coord();
uv1 = new UVCoord();
uv2 = new UVCoord();
uv3 = new UVCoord();
}
public void Scale(float x, float y, float z)
{
v1.X *= x;
v1.Y *= y;
v1.Z *= z;
v2.X *= x;
v2.Y *= y;
v2.Z *= z;
v3.X *= x;
v3.Y *= y;
v3.Z *= z;
}
public void AddPos(float x, float y, float z)
{
v1.X += x;
v2.X += x;
v3.X += x;
v1.Y += y;
v2.Y += y;
v3.Y += y;
v1.Z += z;
v2.Z += z;
v3.Z += z;
}
public void AddRot(Quat q)
{
v1 *= q;
v2 *= q;
v3 *= q;
n1 *= q;
n2 *= q;
n3 *= q;
}
public void CalcSurfaceNormal()
{
var edge1 = new Coord(v2.X - v1.X, v2.Y - v1.Y, v2.Z - v1.Z);
var edge2 = new Coord(v3.X - v1.X, v3.Y - v1.Y, v3.Z - v1.Z);
n1 = n2 = n3 = Coord.Cross(edge1, edge2).Normalize();
}
}
internal struct Angle
{
internal float angle;
internal float X;
internal float Y;
internal Angle(float angle, float x, float y)
{
this.angle = angle;
X = x;
Y = y;
}
}
internal class AngleList
{
private static readonly Angle[] angles3 =
{
new Angle(0.0f, 1.0f, 0.0f),
new Angle(0.33333333333333333f, -0.5f, 0.86602540378443871f),
new Angle(0.66666666666666667f, -0.5f, -0.86602540378443837f),
new Angle(1.0f, 1.0f, 0.0f)
};
private static readonly Coord[] normals3 =
{
new Coord(0.25f, 0.4330127019f, 0.0f).Normalize(),
new Coord(-0.5f, 0.0f, 0.0f).Normalize(),
new Coord(0.25f, -0.4330127019f, 0.0f).Normalize(),
new Coord(0.25f, 0.4330127019f, 0.0f).Normalize()
};
private static readonly Angle[] angles4 =
{
new Angle(0.0f, 1.0f, 0.0f),
new Angle(0.25f, 0.0f, 1.0f),
new Angle(0.5f, -1.0f, 0.0f),
new Angle(0.75f, 0.0f, -1.0f),
new Angle(1.0f, 1.0f, 0.0f)
};
private static readonly Coord[] normals4 =
{
new Coord(0.5f, 0.5f, 0.0f).Normalize(),
new Coord(-0.5f, 0.5f, 0.0f).Normalize(),
new Coord(-0.5f, -0.5f, 0.0f).Normalize(),
new Coord(0.5f, -0.5f, 0.0f).Normalize(),
new Coord(0.5f, 0.5f, 0.0f).Normalize()
};
private static readonly Angle[] angles24 =
{
new Angle(0.0f, 1.0f, 0.0f),
new Angle(0.041666666666666664f, 0.96592582628906831f, 0.25881904510252074f),
new Angle(0.083333333333333329f, 0.86602540378443871f, 0.5f),
new Angle(0.125f, 0.70710678118654757f, 0.70710678118654746f),
new Angle(0.16666666666666667f, 0.5f, 0.8660254037844386f),
new Angle(0.20833333333333331f, 0.25881904510252096f, 0.9659258262890682f),
new Angle(0.25f, 0.0f, 1.0f),
new Angle(0.29166666666666663f, -0.25881904510252063f, 0.96592582628906831f),
new Angle(0.33333333333333333f, -0.5f, 0.86602540378443871f),
new Angle(0.375f, -0.70710678118654746f, 0.70710678118654757f),
new Angle(0.41666666666666663f, -0.86602540378443849f, 0.5f),
new Angle(0.45833333333333331f, -0.9659258262890682f, 0.25881904510252102f),
new Angle(0.5f, -1.0f, 0.0f),
new Angle(0.54166666666666663f, -0.96592582628906842f, -0.25881904510252035f),
new Angle(0.58333333333333326f, -0.86602540378443882f, -0.5f),
new Angle(0.62499999999999989f, -0.70710678118654791f, -0.70710678118654713f),
new Angle(0.66666666666666667f, -0.5f, -0.86602540378443837f),
new Angle(0.70833333333333326f, -0.25881904510252152f, -0.96592582628906809f),
new Angle(0.75f, 0.0f, -1.0f),
new Angle(0.79166666666666663f, 0.2588190451025203f, -0.96592582628906842f),
new Angle(0.83333333333333326f, 0.5f, -0.86602540378443904f),
new Angle(0.875f, 0.70710678118654735f, -0.70710678118654768f),
new Angle(0.91666666666666663f, 0.86602540378443837f, -0.5f),
new Angle(0.95833333333333326f, 0.96592582628906809f, -0.25881904510252157f),
new Angle(1.0f, 1.0f, 0.0f)
};
internal List<Angle> angles;
private float iX, iY; // intersection point
internal List<Coord> normals;
private Angle interpolatePoints(float newPoint, Angle p1, Angle p2)
{
var m = (newPoint - p1.angle) / (p2.angle - p1.angle);
return new Angle(newPoint, p1.X + m * (p2.X - p1.X), p1.Y + m * (p2.Y - p1.Y));
}
private void intersection(double x1, double y1, double x2, double y2, double x3, double y3, double x4,
double y4)
{
// ref: http://local.wasp.uwa.edu.au/~pbourke/geometry/lineline2d/
var denom = (y4 - y3) * (x2 - x1) - (x4 - x3) * (y2 - y1);
var uaNumerator = (x4 - x3) * (y1 - y3) - (y4 - y3) * (x1 - x3);
if (denom != 0.0)
{
var ua = uaNumerator / denom;
iX = (float) (x1 + ua * (x2 - x1));
iY = (float) (y1 + ua * (y2 - y1));
}
}
internal void makeAngles(int sides, float startAngle, float stopAngle)
{
angles = new List<Angle>();
normals = new List<Coord>();
var twoPi = Math.PI * 2.0;
var twoPiInv = 1.0f / (float) twoPi;
if (sides < 1)
throw new Exception("number of sides not greater than zero");
if (stopAngle <= startAngle)
throw new Exception("stopAngle not greater than startAngle");
if (sides == 3 || sides == 4 || sides == 24)
{
startAngle *= twoPiInv;
stopAngle *= twoPiInv;
Angle[] sourceAngles;
if (sides == 3)
sourceAngles = angles3;
else if (sides == 4)
sourceAngles = angles4;
else sourceAngles = angles24;
var startAngleIndex = (int) (startAngle * sides);
var endAngleIndex = sourceAngles.Length - 1;
if (stopAngle < 1.0f)
endAngleIndex = (int) (stopAngle * sides) + 1;
if (endAngleIndex == startAngleIndex)
endAngleIndex++;
for (var angleIndex = startAngleIndex; angleIndex < endAngleIndex + 1; angleIndex++)
{
angles.Add(sourceAngles[angleIndex]);
if (sides == 3)
normals.Add(normals3[angleIndex]);
else if (sides == 4)
normals.Add(normals4[angleIndex]);
}
if (startAngle > 0.0f)
angles[0] = interpolatePoints(startAngle, angles[0], angles[1]);
if (stopAngle < 1.0f)
{
var lastAngleIndex = angles.Count - 1;
angles[lastAngleIndex] =
interpolatePoints(stopAngle, angles[lastAngleIndex - 1], angles[lastAngleIndex]);
}
}
else
{
var stepSize = twoPi / sides;
var startStep = (int) (startAngle / stepSize);
var angle = stepSize * startStep;
var step = startStep;
double stopAngleTest = stopAngle;
if (stopAngle < twoPi)
{
stopAngleTest = stepSize * ((int) (stopAngle / stepSize) + 1);
if (stopAngleTest < stopAngle)
stopAngleTest += stepSize;
if (stopAngleTest > twoPi)
stopAngleTest = twoPi;
}
while (angle <= stopAngleTest)
{
Angle newAngle;
newAngle.angle = (float) angle;
newAngle.X = (float) Math.Cos(angle);
newAngle.Y = (float) Math.Sin(angle);
angles.Add(newAngle);
step += 1;
angle = stepSize * step;
}
if (startAngle > angles[0].angle)
{
Angle newAngle;
intersection(angles[0].X, angles[0].Y, angles[1].X, angles[1].Y, 0.0f, 0.0f,
(float) Math.Cos(startAngle), (float) Math.Sin(startAngle));
newAngle.angle = startAngle;
newAngle.X = iX;
newAngle.Y = iY;
angles[0] = newAngle;
}
var index = angles.Count - 1;
if (stopAngle < angles[index].angle)
{
Angle newAngle;
intersection(angles[index - 1].X, angles[index - 1].Y, angles[index].X, angles[index].Y, 0.0f, 0.0f,
(float) Math.Cos(stopAngle), (float) Math.Sin(stopAngle));
newAngle.angle = stopAngle;
newAngle.X = iX;
newAngle.Y = iY;
angles[index] = newAngle;
}
}
}
}
/// <summary>
/// generates a profile for extrusion
/// </summary>
public class Profile
{
private const float twoPi = 2.0f * (float) Math.PI;
public int bottomFaceNumber;
public bool calcVertexNormals;
public List<Coord> coords;
public List<int> cut1CoordIndices;
public List<int> cut2CoordIndices;
public Coord cutNormal1;
public Coord cutNormal2;
public string errorMessage;
public Coord faceNormal = new Coord(0.0f, 0.0f, 1.0f);
public List<int> faceNumbers;
public List<Face> faces;
public List<UVCoord> faceUVs;
public List<int> hollowCoordIndices;
public int hollowFaceNumber = -1;
public int numHollowVerts;
public int numOuterVerts;
public int numPrimFaces;
// use these for making individual meshes for each prim face
public List<int> outerCoordIndices;
public int outerFaceNumber = -1;
public List<float> us;
public List<Coord> vertexNormals;
public Profile()
{
coords = new List<Coord>();
faces = new List<Face>();
vertexNormals = new List<Coord>();
us = new List<float>();
faceUVs = new List<UVCoord>();
faceNumbers = new List<int>();
}
public Profile(int sides, float profileStart, float profileEnd, float hollow, int hollowSides, bool createFaces,
bool calcVertexNormals)
{
this.calcVertexNormals = calcVertexNormals;
coords = new List<Coord>();
faces = new List<Face>();
vertexNormals = new List<Coord>();
us = new List<float>();
faceUVs = new List<UVCoord>();
faceNumbers = new List<int>();
var center = new Coord(0.0f, 0.0f, 0.0f);
var hollowCoords = new List<Coord>();
var hollowNormals = new List<Coord>();
var hollowUs = new List<float>();
if (calcVertexNormals)
{
outerCoordIndices = new List<int>();
hollowCoordIndices = new List<int>();
cut1CoordIndices = new List<int>();
cut2CoordIndices = new List<int>();
}
var hasHollow = hollow > 0.0f;
var hasProfileCut = profileStart > 0.0f || profileEnd < 1.0f;
var angles = new AngleList();
var hollowAngles = new AngleList();
var xScale = 0.5f;
var yScale = 0.5f;
if (sides == 4) // corners of a square are sqrt(2) from center
{
xScale = 0.707107f;
yScale = 0.707107f;
}
var startAngle = profileStart * twoPi;
var stopAngle = profileEnd * twoPi;
try
{
angles.makeAngles(sides, startAngle, stopAngle);
}
catch (Exception ex)
{
errorMessage = "makeAngles failed: Exception: " + ex
+ "\nsides: " + sides + " startAngle: " + startAngle + " stopAngle: " + stopAngle;
return;
}
numOuterVerts = angles.angles.Count;
// flag to create as few triangles as possible for 3 or 4 side profile
var simpleFace = sides < 5 && !hasHollow && !hasProfileCut;
if (hasHollow)
{
if (sides == hollowSides)
hollowAngles = angles;
else
try
{
hollowAngles.makeAngles(hollowSides, startAngle, stopAngle);
}
catch (Exception ex)
{
errorMessage = "makeAngles failed: Exception: " + ex
+ "\nsides: " + sides + " startAngle: " + startAngle + " stopAngle: " +
stopAngle;
return;
}
numHollowVerts = hollowAngles.angles.Count;
}
else if (!simpleFace)
{
coords.Add(center);
if (this.calcVertexNormals)
vertexNormals.Add(new Coord(0.0f, 0.0f, 1.0f));
us.Add(0.0f);
}
var z = 0.0f;
Angle angle;
var newVert = new Coord();
if (hasHollow && hollowSides != sides)
{
var numHollowAngles = hollowAngles.angles.Count;
for (var i = 0; i < numHollowAngles; i++)
{
angle = hollowAngles.angles[i];
newVert.X = hollow * xScale * angle.X;
newVert.Y = hollow * yScale * angle.Y;
newVert.Z = z;
hollowCoords.Add(newVert);
if (this.calcVertexNormals)
{
hollowNormals.Add(hollowSides < 5
? hollowAngles.normals[i].Invert()
: new Coord(-angle.X, -angle.Y, 0.0f));
if (hollowSides == 4)
hollowUs.Add(angle.angle * hollow * 0.707107f);
else
hollowUs.Add(angle.angle * hollow);
}
}
}
var index = 0;
var numAngles = angles.angles.Count;
for (var i = 0; i < numAngles; i++)
{
angle = angles.angles[i];
newVert.X = angle.X * xScale;
newVert.Y = angle.Y * yScale;
newVert.Z = z;
coords.Add(newVert);
if (this.calcVertexNormals)
{
outerCoordIndices.Add(coords.Count - 1);
if (sides < 5)
{
vertexNormals.Add(angles.normals[i]);
var u = angle.angle;
us.Add(u);
}
else
{
vertexNormals.Add(new Coord(angle.X, angle.Y, 0.0f));
us.Add(angle.angle);
}
}
if (hasHollow)
{
if (hollowSides == sides)
{
newVert.X *= hollow;
newVert.Y *= hollow;
newVert.Z = z;
hollowCoords.Add(newVert);
if (this.calcVertexNormals)
{
hollowNormals.Add(sides < 5
? angles.normals[i].Invert()
: new Coord(-angle.X, -angle.Y, 0.0f));
hollowUs.Add(angle.angle * hollow);
}
}
}
else if (!simpleFace && createFaces && angle.angle > 0.0001f)
{
var newFace = new Face
{
v1 = 0,
v2 = index,
v3 = index + 1
};
faces.Add(newFace);
}
index += 1;
}
if (hasHollow)
{
hollowCoords.Reverse();
if (this.calcVertexNormals)
{
hollowNormals.Reverse();
hollowUs.Reverse();
}
if (createFaces)
{
var numTotalVerts = numOuterVerts + numHollowVerts;
if (numOuterVerts == numHollowVerts)
{
var newFace = new Face();
for (var coordIndex = 0; coordIndex < numOuterVerts - 1; coordIndex++)
{
newFace.v1 = coordIndex;
newFace.v2 = coordIndex + 1;
newFace.v3 = numTotalVerts - coordIndex - 1;
faces.Add(newFace);
newFace.v1 = coordIndex + 1;
newFace.v2 = numTotalVerts - coordIndex - 2;
newFace.v3 = numTotalVerts - coordIndex - 1;
faces.Add(newFace);
}
}
else
{
if (numOuterVerts < numHollowVerts)
{
var newFace = new Face();
var j = 0; // j is the index for outer vertices
var maxJ = numOuterVerts - 1;
for (var i = 0; i < numHollowVerts; i++) // i is the index for inner vertices
{
if (j < maxJ)
if (angles.angles[j + 1].angle - hollowAngles.angles[i].angle <
hollowAngles.angles[i].angle - angles.angles[j].angle + 0.000001f)
{
newFace.v1 = numTotalVerts - i - 1;
newFace.v2 = j;
newFace.v3 = j + 1;
faces.Add(newFace);
j += 1;
}
newFace.v1 = j;
newFace.v2 = numTotalVerts - i - 2;
newFace.v3 = numTotalVerts - i - 1;
faces.Add(newFace);
}
}
else // numHollowVerts < numOuterVerts
{
var newFace = new Face();
var j = 0; // j is the index for inner vertices
var maxJ = numHollowVerts - 1;
for (var i = 0; i < numOuterVerts; i++)
{
if (j < maxJ)
if (hollowAngles.angles[j + 1].angle - angles.angles[i].angle <
angles.angles[i].angle - hollowAngles.angles[j].angle + 0.000001f)
{
newFace.v1 = i;
newFace.v2 = numTotalVerts - j - 2;
newFace.v3 = numTotalVerts - j - 1;
faces.Add(newFace);
j += 1;
}
newFace.v1 = numTotalVerts - j - 1;
newFace.v2 = i;
newFace.v3 = i + 1;
faces.Add(newFace);
}
}
}
}
if (calcVertexNormals)
foreach (var hc in hollowCoords)
{
coords.Add(hc);
hollowCoordIndices.Add(coords.Count - 1);
}
else
coords.AddRange(hollowCoords);
if (this.calcVertexNormals)
{
vertexNormals.AddRange(hollowNormals);
us.AddRange(hollowUs);
}
}
if (simpleFace && createFaces)
if (sides == 3)
{
faces.Add(new Face(0, 1, 2));
}
else if (sides == 4)
{
faces.Add(new Face(0, 1, 2));
faces.Add(new Face(0, 2, 3));
}
if (calcVertexNormals && hasProfileCut)
{
var lastOuterVertIndex = numOuterVerts - 1;
if (hasHollow)
{
cut1CoordIndices.Add(0);
cut1CoordIndices.Add(coords.Count - 1);
cut2CoordIndices.Add(lastOuterVertIndex + 1);
cut2CoordIndices.Add(lastOuterVertIndex);
cutNormal1.X = coords[0].Y - coords[coords.Count - 1].Y;
cutNormal1.Y = -(coords[0].X - coords[coords.Count - 1].X);
cutNormal2.X = coords[lastOuterVertIndex + 1].Y - coords[lastOuterVertIndex].Y;
cutNormal2.Y = -(coords[lastOuterVertIndex + 1].X - coords[lastOuterVertIndex].X);
}
else
{
cut1CoordIndices.Add(0);
cut1CoordIndices.Add(1);
cut2CoordIndices.Add(lastOuterVertIndex);
cut2CoordIndices.Add(0);
cutNormal1.X = vertexNormals[1].Y;
cutNormal1.Y = -vertexNormals[1].X;
cutNormal2.X = -vertexNormals[vertexNormals.Count - 2].Y;
cutNormal2.Y = vertexNormals[vertexNormals.Count - 2].X;
}
cutNormal1.Normalize();
cutNormal2.Normalize();
}
MakeFaceUVs();
hollowCoords = null;
hollowNormals = null;
hollowUs = null;
if (calcVertexNormals)
{
// calculate prim face numbers
// face number order is top, outer, hollow, bottom, start cut, end cut
// I know it's ugly but so is the whole concept of prim face numbers
var faceNum = 1; // start with outer faces
outerFaceNumber = faceNum;
var startVert = hasProfileCut && !hasHollow ? 1 : 0;
if (startVert > 0)
faceNumbers.Add(-1);
for (var i = 0; i < numOuterVerts - 1; i++)
faceNumbers.Add(sides < 5 && i <= sides ? faceNum++ : faceNum);
faceNumbers.Add(hasProfileCut ? -1 : faceNum++);
if (sides > 4 && (hasHollow || hasProfileCut))
faceNum++;
if (sides < 5 && (hasHollow || hasProfileCut) && numOuterVerts < sides)
faceNum++;
if (hasHollow)
{
for (var i = 0; i < numHollowVerts; i++)
faceNumbers.Add(faceNum);
hollowFaceNumber = faceNum++;
}
bottomFaceNumber = faceNum++;
if (hasHollow && hasProfileCut)
faceNumbers.Add(faceNum++);
for (var i = 0; i < faceNumbers.Count; i++)
if (faceNumbers[i] == -1)
faceNumbers[i] = faceNum++;
numPrimFaces = faceNum;
}
}
public void MakeFaceUVs()
{
faceUVs = new List<UVCoord>();
foreach (var c in coords)
faceUVs.Add(new UVCoord(1.0f - (0.5f + c.X), 1.0f - (0.5f - c.Y)));
}
public Profile Copy()
{
return Copy(true);
}
public Profile Copy(bool needFaces)
{
var copy = new Profile();
copy.coords.AddRange(coords);
copy.faceUVs.AddRange(faceUVs);
if (needFaces)
copy.faces.AddRange(faces);
if (copy.calcVertexNormals = calcVertexNormals)
{
copy.vertexNormals.AddRange(vertexNormals);
copy.faceNormal = faceNormal;
copy.cutNormal1 = cutNormal1;
copy.cutNormal2 = cutNormal2;
copy.us.AddRange(us);
copy.faceNumbers.AddRange(faceNumbers);
copy.cut1CoordIndices = new List<int>(cut1CoordIndices);
copy.cut2CoordIndices = new List<int>(cut2CoordIndices);
copy.hollowCoordIndices = new List<int>(hollowCoordIndices);
copy.outerCoordIndices = new List<int>(outerCoordIndices);
}
copy.numOuterVerts = numOuterVerts;
copy.numHollowVerts = numHollowVerts;
return copy;
}
public void AddPos(Coord v)
{
AddPos(v.X, v.Y, v.Z);
}
public void AddPos(float x, float y, float z)
{
int i;
var numVerts = coords.Count;
Coord vert;
for (i = 0; i < numVerts; i++)
{
vert = coords[i];
vert.X += x;
vert.Y += y;
vert.Z += z;
coords[i] = vert;
}
}
public void AddRot(Quat q)
{
int i;
var numVerts = coords.Count;
for (i = 0; i < numVerts; i++)
coords[i] *= q;
if (calcVertexNormals)
{
var numNormals = vertexNormals.Count;
for (i = 0; i < numNormals; i++)
vertexNormals[i] *= q;
faceNormal *= q;
cutNormal1 *= q;
cutNormal2 *= q;
}
}
public void Scale(float x, float y)
{
int i;
var numVerts = coords.Count;
Coord vert;
for (i = 0; i < numVerts; i++)
{
vert = coords[i];
vert.X *= x;
vert.Y *= y;
coords[i] = vert;
}
}
/// <summary>
/// Changes order of the vertex indices and negates the center vertex normal. Does not alter vertex normals of radial
/// vertices
/// </summary>
public void FlipNormals()
{
int i;
var numFaces = faces.Count;
Face tmpFace;
int tmp;
for (i = 0; i < numFaces; i++)
{
tmpFace = faces[i];
tmp = tmpFace.v3;
tmpFace.v3 = tmpFace.v1;
tmpFace.v1 = tmp;
faces[i] = tmpFace;
}
if (calcVertexNormals)
{
var normalCount = vertexNormals.Count;
if (normalCount > 0)
{
var n = vertexNormals[normalCount - 1];
n.Z = -n.Z;
vertexNormals[normalCount - 1] = n;
}
}
faceNormal.X = -faceNormal.X;
faceNormal.Y = -faceNormal.Y;
faceNormal.Z = -faceNormal.Z;
var numfaceUVs = faceUVs.Count;
for (i = 0; i < numfaceUVs; i++)
{
var uv = faceUVs[i];
uv.V = 1.0f - uv.V;
faceUVs[i] = uv;
}
}
public void AddValue2FaceVertexIndices(int num)
{
var numFaces = faces.Count;
Face tmpFace;
for (var i = 0; i < numFaces; i++)
{
tmpFace = faces[i];
tmpFace.v1 += num;
tmpFace.v2 += num;
tmpFace.v3 += num;
faces[i] = tmpFace;
}
}
public void AddValue2FaceNormalIndices(int num)
{
if (calcVertexNormals)
{
var numFaces = faces.Count;
Face tmpFace;
for (var i = 0; i < numFaces; i++)
{
tmpFace = faces[i];
tmpFace.n1 += num;
tmpFace.n2 += num;
tmpFace.n3 += num;
faces[i] = tmpFace;
}
}
}
public void DumpRaw(string path, string name, string title)
{
if (path == null)
return;
var fileName = name + "_" + title + ".raw";
var completePath = System.IO.Path.Combine(path, fileName);
var sw = new StreamWriter(completePath);
for (var i = 0; i < faces.Count; i++)
{
var s = coords[faces[i].v1].ToString();
s += " " + coords[faces[i].v2];
s += " " + coords[faces[i].v3];
sw.WriteLine(s);
}
sw.Close();
}
}
public struct PathNode
{
public Coord position;
public Quat rotation;
public float xScale;
public float yScale;
public float percentOfPath;
}
public enum PathType
{
Linear = 0,
Circular = 1,
Flexible = 2
}
public class Path
{
private const float twoPi = 2.0f * (float) Math.PI;
public float dimpleBegin;
public float dimpleEnd = 1.0f;
public float holeSizeX = 1.0f; // called pathScaleX in pbs
public float holeSizeY = 0.25f;
public float pathCutBegin;
public float pathCutEnd = 1.0f;
public List<PathNode> pathNodes = new List<PathNode>();
public float radius;
public float revolutions = 1.0f;
public float skew;
public int stepsPerRevolution = 24;
public float taperX;
public float taperY;
public float topShearX;
public float topShearY;
public float twistBegin;
public float twistEnd;
public void Create(PathType pathType, int steps)
{
if (taperX > 0.999f)
taperX = 0.999f;
if (taperX < -0.999f)
taperX = -0.999f;
if (taperY > 0.999f)
taperY = 0.999f;
if (taperY < -0.999f)
taperY = -0.999f;
if (pathType == PathType.Linear || pathType == PathType.Flexible)
{
var step = 0;
var length = pathCutEnd - pathCutBegin;
var twistTotal = twistEnd - twistBegin;
var twistTotalAbs = Math.Abs(twistTotal);
if (twistTotalAbs > 0.01f)
steps += (int) (twistTotalAbs * 3.66); // dahlia's magic number
var start = -0.5f;
var stepSize = length / steps;
var percentOfPathMultiplier = stepSize * 0.999999f;
var xOffset = topShearX * pathCutBegin;
var yOffset = topShearY * pathCutBegin;
var zOffset = start;
var xOffsetStepIncrement = topShearX * length / steps;
var yOffsetStepIncrement = topShearY * length / steps;
var percentOfPath = pathCutBegin;
zOffset += percentOfPath;
// sanity checks
var done = false;
while (!done)
{
var newNode = new PathNode {xScale = 1.0f};
if (taperX == 0.0f)
newNode.xScale = 1.0f;
else if (taperX > 0.0f)
newNode.xScale = 1.0f - percentOfPath * taperX;
else newNode.xScale = 1.0f + (1.0f - percentOfPath) * taperX;
newNode.yScale = 1.0f;
if (taperY == 0.0f)
newNode.yScale = 1.0f;
else if (taperY > 0.0f)
newNode.yScale = 1.0f - percentOfPath * taperY;
else newNode.yScale = 1.0f + (1.0f - percentOfPath) * taperY;
var twist = twistBegin + twistTotal * percentOfPath;
newNode.rotation = new Quat(new Coord(0.0f, 0.0f, 1.0f), twist);
newNode.position = new Coord(xOffset, yOffset, zOffset);
newNode.percentOfPath = percentOfPath;
pathNodes.Add(newNode);
if (step < steps)
{
step += 1;
percentOfPath += percentOfPathMultiplier;
xOffset += xOffsetStepIncrement;
yOffset += yOffsetStepIncrement;
zOffset += stepSize;
if (percentOfPath > pathCutEnd)
done = true;
}
else
{
done = true;
}
}
} // end of linear path code
else // pathType == Circular
{
var twistTotal = twistEnd - twistBegin;
// if the profile has a lot of twist, add more layers otherwise the layers may overlap
// and the resulting mesh may be quite inaccurate. This method is arbitrary and doesn't
// accurately match the viewer
var twistTotalAbs = Math.Abs(twistTotal);
if (twistTotalAbs > 0.01f)
{
if (twistTotalAbs > Math.PI * 1.5f)
steps *= 2;
if (twistTotalAbs > Math.PI * 3.0f)
steps *= 2;
}
var yPathScale = holeSizeY * 0.5f;
var pathLength = pathCutEnd - pathCutBegin;
var totalSkew = skew * 2.0f * pathLength;
var skewStart = pathCutBegin * 2.0f * skew - skew;
var xOffsetTopShearXFactor = topShearX * (0.25f + 0.5f * (0.5f - holeSizeY));
var yShearCompensation = 1.0f + Math.Abs(topShearY) * 0.25f;
// It's not quite clear what pushY (Y top shear) does, but subtracting it from the start and end
// angles appears to approximate it's effects on path cut. Likewise, adding it to the angle used
// to calculate the sine for generating the path radius appears to approximate it's effects there
// too, but there are some subtle differences in the radius which are noticeable as the prim size
// increases and it may affect megaprims quite a bit. The effect of the Y top shear parameter on
// the meshes generated with this technique appear nearly identical in shape to the same prims when
// displayed by the viewer.
var startAngle = twoPi * pathCutBegin * revolutions - topShearY * 0.9f;
var endAngle = twoPi * pathCutEnd * revolutions - topShearY * 0.9f;
var stepSize = twoPi / stepsPerRevolution;
var step = (int) (startAngle / stepSize);
var angle = startAngle;
var done = false;
while (!done) // loop through the length of the path and add the layers
{
var newNode = new PathNode();
var xProfileScale = (1.0f - Math.Abs(skew)) * holeSizeX;
var yProfileScale = holeSizeY;
var percentOfPath = angle / (twoPi * revolutions);
var percentOfAngles = (angle - startAngle) / (endAngle - startAngle);
if (taperX > 0.01f)
xProfileScale *= 1.0f - percentOfPath * taperX;
else if (taperX < -0.01f)
xProfileScale *= 1.0f + (1.0f - percentOfPath) * taperX;
if (taperY > 0.01f)
yProfileScale *= 1.0f - percentOfPath * taperY;
else if (taperY < -0.01f)
yProfileScale *= 1.0f + (1.0f - percentOfPath) * taperY;
newNode.xScale = xProfileScale;
newNode.yScale = yProfileScale;
var radiusScale = 1.0f;
if (radius > 0.001f)
radiusScale = 1.0f - radius * percentOfPath;
else if (radius < 0.001f)
radiusScale = 1.0f + radius * (1.0f - percentOfPath);
var twist = twistBegin + twistTotal * percentOfPath;
var xOffset = 0.5f * (skewStart + totalSkew * percentOfAngles);
xOffset += (float) Math.Sin(angle) * xOffsetTopShearXFactor;
var yOffset = yShearCompensation * (float) Math.Cos(angle) * (0.5f - yPathScale) * radiusScale;
var zOffset = (float) Math.Sin(angle + topShearY) * (0.5f - yPathScale) * radiusScale;
newNode.position = new Coord(xOffset, yOffset, zOffset);
// now orient the rotation of the profile layer relative to it's position on the path
// adding taperY to the angle used to generate the quat appears to approximate the viewer
newNode.rotation = new Quat(new Coord(1.0f, 0.0f, 0.0f), angle + topShearY);
// next apply twist rotation to the profile layer
if (twistTotal != 0.0f || twistBegin != 0.0f)
newNode.rotation *= new Quat(new Coord(0.0f, 0.0f, 1.0f), twist);
newNode.percentOfPath = percentOfPath;
pathNodes.Add(newNode);
// calculate terms for next iteration
// calculate the angle for the next iteration of the loop
if (angle >= endAngle - 0.01)
{
done = true;
}
else
{
step += 1;
angle = stepSize * step;
if (angle > endAngle)
angle = endAngle;
}
}
}
}
}
public class PrimMesh
{
private const float twoPi = 2.0f * (float) Math.PI;
public bool calcVertexNormals;
public List<Coord> coords;
public float dimpleBegin;
public float dimpleEnd = 1.0f;
public string errorMessage = "";
public List<Face> faces;
public float holeSizeX = 1.0f; // called pathScaleX in pbs
public float holeSizeY = 0.25f;
private readonly float hollow;
private readonly int hollowSides = 4;
public List<Coord> normals;
private bool normalsProcessed;
public int numPrimFaces;
public float pathCutBegin;
public float pathCutEnd = 1.0f;
private readonly float profileEnd = 1.0f;
private readonly float profileStart;
public float radius;
public float revolutions = 1.0f;
private readonly int sides = 4;
public float skew;
public bool sphereMode = false;
public int stepsPerRevolution = 24;
public float taperX;
public float taperY;
public float topShearX;
public float topShearY;
public int twistBegin;
public int twistEnd;
public List<ViewerFace> viewerFaces;
public bool viewerMode;
/// <summary>
/// Constructs a PrimMesh object and creates the profile for extrusion.
/// </summary>
/// <param name="sides"></param>
/// <param name="profileStart"></param>
/// <param name="profileEnd"></param>
/// <param name="hollow"></param>
/// <param name="hollowSides"></param>
public PrimMesh(int sides, float profileStart, float profileEnd, float hollow, int hollowSides)
{
coords = new List<Coord>();
faces = new List<Face>();
this.sides = sides;
this.profileStart = profileStart;
this.profileEnd = profileEnd;
this.hollow = hollow;
this.hollowSides = hollowSides;
if (sides < 3)
this.sides = 3;
if (hollowSides < 3)
this.hollowSides = 3;
if (profileStart < 0.0f)
this.profileStart = 0.0f;
if (profileEnd > 1.0f)
this.profileEnd = 1.0f;
if (profileEnd < 0.02f)
this.profileEnd = 0.02f;
if (profileStart >= profileEnd)
this.profileStart = profileEnd - 0.02f;
if (hollow > 0.99f)
this.hollow = 0.99f;
if (hollow < 0.0f)
this.hollow = 0.0f;
}
public int ProfileOuterFaceNumber { get; private set; } = -1;
public int ProfileHollowFaceNumber { get; private set; } = -1;
public bool HasProfileCut { get; private set; }
public bool HasHollow { get; private set; }
/// <summary>
/// Human readable string representation of the parameters used to create a mesh.
/// </summary>
/// <returns></returns>
public string ParamsToDisplayString()
{
var s = "";
s += "sides..................: " + sides;
s += "\nhollowSides..........: " + hollowSides;
s += "\nprofileStart.........: " + profileStart;
s += "\nprofileEnd...........: " + profileEnd;
s += "\nhollow...............: " + hollow;
s += "\ntwistBegin...........: " + twistBegin;
s += "\ntwistEnd.............: " + twistEnd;
s += "\ntopShearX............: " + topShearX;
s += "\ntopShearY............: " + topShearY;
s += "\npathCutBegin.........: " + pathCutBegin;
s += "\npathCutEnd...........: " + pathCutEnd;
s += "\ndimpleBegin..........: " + dimpleBegin;
s += "\ndimpleEnd............: " + dimpleEnd;
s += "\nskew.................: " + skew;
s += "\nholeSizeX............: " + holeSizeX;
s += "\nholeSizeY............: " + holeSizeY;
s += "\ntaperX...............: " + taperX;
s += "\ntaperY...............: " + taperY;
s += "\nradius...............: " + radius;
s += "\nrevolutions..........: " + revolutions;
s += "\nstepsPerRevolution...: " + stepsPerRevolution;
s += "\nsphereMode...........: " + sphereMode;
s += "\nhasProfileCut........: " + HasProfileCut;
s += "\nhasHollow............: " + HasHollow;
s += "\nviewerMode...........: " + viewerMode;
return s;
}
/// <summary>
/// Extrudes a profile along a path.
/// </summary>
public void Extrude(PathType pathType)
{
var needEndFaces = false;
coords = new List<Coord>();
this.faces = new List<Face>();
if (viewerMode)
{
viewerFaces = new List<ViewerFace>();
calcVertexNormals = true;
}
if (calcVertexNormals)
normals = new List<Coord>();
var steps = 1;
var length = pathCutEnd - pathCutBegin;
normalsProcessed = false;
if (viewerMode && sides == 3)
if (Math.Abs(taperX) > 0.01 || Math.Abs(taperY) > 0.01)
steps = (int) (steps * 4.5 * length);
if (sphereMode)
HasProfileCut = profileEnd - profileStart < 0.4999f;
else
HasProfileCut = profileEnd - profileStart < 0.9999f;
HasHollow = this.hollow > 0.001f;
var twistBegin = this.twistBegin / 360.0f * twoPi;
var twistEnd = this.twistEnd / 360.0f * twoPi;
var twistTotal = twistEnd - twistBegin;
var twistTotalAbs = Math.Abs(twistTotal);
if (twistTotalAbs > 0.01f)
steps += (int) (twistTotalAbs * 3.66); // dahlia's magic number
var hollow = this.hollow;
if (pathType == PathType.Circular)
{
needEndFaces = false;
if (pathCutBegin != 0.0f || pathCutEnd != 1.0f)
needEndFaces = true;
else if (taperX != 0.0f || taperY != 0.0f)
needEndFaces = true;
else if (skew != 0.0f)
needEndFaces = true;
else if (twistTotal != 0.0f)
needEndFaces = true;
else if (radius != 0.0f)
needEndFaces = true;
}
else
{
needEndFaces = true;
}
// sanity checks
var initialProfileRot = 0.0f;
if (pathType == PathType.Circular)
{
switch (sides)
{
case 3:
initialProfileRot = (float) Math.PI;
if (hollowSides == 4)
{
if (hollow > 0.7f)
hollow = 0.7f;
hollow *= 0.707f;
}
else
{
hollow *= 0.5f;
}
break;
case 4:
initialProfileRot = 0.25f * (float) Math.PI;
if (hollowSides != 4)
hollow *= 0.707f;
break;
default:
if (sides > 4)
{
initialProfileRot = (float) Math.PI;
if (hollowSides == 4)
{
if (hollow > 0.7f)
hollow = 0.7f;
hollow /= 0.7f;
}
}
break;
}
}
else
{
switch (sides)
{
case 3:
if (hollowSides == 4)
{
if (hollow > 0.7f)
hollow = 0.7f;
hollow *= 0.707f;
}
else
{
hollow *= 0.5f;
}
break;
case 4:
initialProfileRot = 1.25f * (float) Math.PI;
if (hollowSides != 4)
hollow *= 0.707f;
break;
case 24 when hollowSides == 4:
hollow *= 1.414f;
break;
}
}
var profile = new Profile(sides, profileStart, profileEnd, hollow, hollowSides, true, calcVertexNormals);
errorMessage = profile.errorMessage;
numPrimFaces = profile.numPrimFaces;
var cut1FaceNumber = profile.bottomFaceNumber + 1;
var cut2FaceNumber = cut1FaceNumber + 1;
if (!needEndFaces)
{
cut1FaceNumber -= 2;
cut2FaceNumber -= 2;
}
ProfileOuterFaceNumber = profile.outerFaceNumber;
if (!needEndFaces)
ProfileOuterFaceNumber--;
if (HasHollow)
{
ProfileHollowFaceNumber = profile.hollowFaceNumber;
if (!needEndFaces)
ProfileHollowFaceNumber--;
}
var cut1Vert = -1;
var cut2Vert = -1;
if (HasProfileCut)
{
cut1Vert = HasHollow ? profile.coords.Count - 1 : 0;
cut2Vert = HasHollow ? profile.numOuterVerts - 1 : profile.numOuterVerts;
}
if (initialProfileRot != 0.0f)
{
profile.AddRot(new Quat(new Coord(0.0f, 0.0f, 1.0f), initialProfileRot));
if (viewerMode)
profile.MakeFaceUVs();
}
var lastCutNormal1 = new Coord();
var lastCutNormal2 = new Coord();
var thisV = 0.0f;
var lastV = 0.0f;
var path = new Path
{
twistBegin = twistBegin,
twistEnd = twistEnd,
topShearX = topShearX,
topShearY = topShearY,
pathCutBegin = pathCutBegin,
pathCutEnd = pathCutEnd,
dimpleBegin = dimpleBegin,
dimpleEnd = dimpleEnd,
skew = skew,
holeSizeX = holeSizeX,
holeSizeY = holeSizeY,
taperX = taperX,
taperY = taperY,
radius = radius,
revolutions = revolutions,
stepsPerRevolution = stepsPerRevolution
};
path.Create(pathType, steps);
for (var nodeIndex = 0; nodeIndex < path.pathNodes.Count; nodeIndex++)
{
var node = path.pathNodes[nodeIndex];
var newLayer = profile.Copy();
newLayer.Scale(node.xScale, node.yScale);
newLayer.AddRot(node.rotation);
newLayer.AddPos(node.position);
if (needEndFaces && nodeIndex == 0)
{
newLayer.FlipNormals();
// add the bottom faces to the viewerFaces list
if (viewerMode)
{
var faceNormal = newLayer.faceNormal;
var newViewerFace = new ViewerFace(profile.bottomFaceNumber);
var numFaces = newLayer.faces.Count;
var faces = newLayer.faces;
for (var i = 0; i < numFaces; i++)
{
var face = faces[i];
newViewerFace.v1 = newLayer.coords[face.v1];
newViewerFace.v2 = newLayer.coords[face.v2];
newViewerFace.v3 = newLayer.coords[face.v3];
newViewerFace.coordIndex1 = face.v1;
newViewerFace.coordIndex2 = face.v2;
newViewerFace.coordIndex3 = face.v3;
newViewerFace.n1 = faceNormal;
newViewerFace.n2 = faceNormal;
newViewerFace.n3 = faceNormal;
newViewerFace.uv1 = newLayer.faceUVs[face.v1];
newViewerFace.uv2 = newLayer.faceUVs[face.v2];
newViewerFace.uv3 = newLayer.faceUVs[face.v3];
if (pathType == PathType.Linear)
{
newViewerFace.uv1.Flip();
newViewerFace.uv2.Flip();
newViewerFace.uv3.Flip();
}
viewerFaces.Add(newViewerFace);
}
}
} // if (nodeIndex == 0)
// append this layer
var coordsLen = coords.Count;
newLayer.AddValue2FaceVertexIndices(coordsLen);
coords.AddRange(newLayer.coords);
if (calcVertexNormals)
{
newLayer.AddValue2FaceNormalIndices(normals.Count);
normals.AddRange(newLayer.vertexNormals);
}
if (node.percentOfPath < pathCutBegin + 0.01f || node.percentOfPath > pathCutEnd - 0.01f)
this.faces.AddRange(newLayer.faces);
// fill faces between layers
var numVerts = newLayer.coords.Count;
var newFace1 = new Face();
var newFace2 = new Face();
thisV = 1.0f - node.percentOfPath;
if (nodeIndex > 0)
{
var startVert = coordsLen + 1;
var endVert = coords.Count;
if (sides < 5 || HasProfileCut || HasHollow)
startVert--;
for (var i = startVert; i < endVert; i++)
{
var iNext = i + 1;
if (i == endVert - 1)
iNext = startVert;
var whichVert = i - startVert;
newFace1.v1 = i;
newFace1.v2 = i - numVerts;
newFace1.v3 = iNext;
newFace1.n1 = newFace1.v1;
newFace1.n2 = newFace1.v2;
newFace1.n3 = newFace1.v3;
faces.Add(newFace1);
newFace2.v1 = iNext;
newFace2.v2 = i - numVerts;
newFace2.v3 = iNext - numVerts;
newFace2.n1 = newFace2.v1;
newFace2.n2 = newFace2.v2;
newFace2.n3 = newFace2.v3;
faces.Add(newFace2);
if (viewerMode)
{
// add the side faces to the list of viewerFaces here
var primFaceNum = profile.faceNumbers[whichVert];
if (!needEndFaces)
primFaceNum -= 1;
var newViewerFace1 = new ViewerFace(primFaceNum);
var newViewerFace2 = new ViewerFace(primFaceNum);
var uIndex = whichVert;
if (!HasHollow && sides > 4 && uIndex < newLayer.us.Count - 1)
uIndex++;
var u1 = newLayer.us[uIndex];
var u2 = 1.0f;
if (uIndex < newLayer.us.Count - 1)
u2 = newLayer.us[uIndex + 1];
if (whichVert == cut1Vert || whichVert == cut2Vert)
{
u1 = 0.0f;
u2 = 1.0f;
}
else if (sides < 5)
{
if (whichVert < profile.numOuterVerts)
{
// boxes and prisms have one texture face per side of the prim, so the U values have to be scaled
// to reflect the entire texture width
u1 *= sides;
u2 *= sides;
u2 -= (int) u1;
u1 -= (int) u1;
if (u2 < 0.1f)
u2 = 1.0f;
}
}
if (sphereMode)
if (whichVert != cut1Vert && whichVert != cut2Vert)
{
u1 = u1 * 2.0f - 1.0f;
u2 = u2 * 2.0f - 1.0f;
if (whichVert >= newLayer.numOuterVerts)
{
u1 -= hollow;
u2 -= hollow;
}
}
newViewerFace1.uv1.U = u1;
newViewerFace1.uv2.U = u1;
newViewerFace1.uv3.U = u2;
newViewerFace1.uv1.V = thisV;
newViewerFace1.uv2.V = lastV;
newViewerFace1.uv3.V = thisV;
newViewerFace2.uv1.U = u2;
newViewerFace2.uv2.U = u1;
newViewerFace2.uv3.U = u2;
newViewerFace2.uv1.V = thisV;
newViewerFace2.uv2.V = lastV;
newViewerFace2.uv3.V = lastV;
newViewerFace1.v1 = coords[newFace1.v1];
newViewerFace1.v2 = coords[newFace1.v2];
newViewerFace1.v3 = coords[newFace1.v3];
newViewerFace2.v1 = coords[newFace2.v1];
newViewerFace2.v2 = coords[newFace2.v2];
newViewerFace2.v3 = coords[newFace2.v3];
newViewerFace1.coordIndex1 = newFace1.v1;
newViewerFace1.coordIndex2 = newFace1.v2;
newViewerFace1.coordIndex3 = newFace1.v3;
newViewerFace2.coordIndex1 = newFace2.v1;
newViewerFace2.coordIndex2 = newFace2.v2;
newViewerFace2.coordIndex3 = newFace2.v3;
// profile cut faces
if (whichVert == cut1Vert)
{
newViewerFace1.primFaceNumber = cut1FaceNumber;
newViewerFace2.primFaceNumber = cut1FaceNumber;
newViewerFace1.n1 = newLayer.cutNormal1;
newViewerFace1.n2 = newViewerFace1.n3 = lastCutNormal1;
newViewerFace2.n1 = newViewerFace2.n3 = newLayer.cutNormal1;
newViewerFace2.n2 = lastCutNormal1;
}
else if (whichVert == cut2Vert)
{
newViewerFace1.primFaceNumber = cut2FaceNumber;
newViewerFace2.primFaceNumber = cut2FaceNumber;
newViewerFace1.n1 = newLayer.cutNormal2;
newViewerFace1.n2 = lastCutNormal2;
newViewerFace1.n3 = lastCutNormal2;
newViewerFace2.n1 = newLayer.cutNormal2;
newViewerFace2.n3 = newLayer.cutNormal2;
newViewerFace2.n2 = lastCutNormal2;
}
else // outer and hollow faces
{
if (sides < 5 && whichVert < newLayer.numOuterVerts ||
hollowSides < 5 && whichVert >= newLayer.numOuterVerts)
{
// looks terrible when path is twisted... need vertex normals here
newViewerFace1.CalcSurfaceNormal();
newViewerFace2.CalcSurfaceNormal();
}
else
{
newViewerFace1.n1 = normals[newFace1.n1];
newViewerFace1.n2 = normals[newFace1.n2];
newViewerFace1.n3 = normals[newFace1.n3];
newViewerFace2.n1 = normals[newFace2.n1];
newViewerFace2.n2 = normals[newFace2.n2];
newViewerFace2.n3 = normals[newFace2.n3];
}
}
viewerFaces.Add(newViewerFace1);
viewerFaces.Add(newViewerFace2);
}
}
}
lastCutNormal1 = newLayer.cutNormal1;
lastCutNormal2 = newLayer.cutNormal2;
lastV = thisV;
if (needEndFaces && nodeIndex == path.pathNodes.Count - 1 && viewerMode)
{
// add the top faces to the viewerFaces list here
var faceNormal = newLayer.faceNormal;
var newViewerFace = new ViewerFace(0);
var numFaces = newLayer.faces.Count;
var faces = newLayer.faces;
for (var i = 0; i < numFaces; i++)
{
var face = faces[i];
newViewerFace.v1 = newLayer.coords[face.v1 - coordsLen];
newViewerFace.v2 = newLayer.coords[face.v2 - coordsLen];
newViewerFace.v3 = newLayer.coords[face.v3 - coordsLen];
newViewerFace.coordIndex1 = face.v1 - coordsLen;
newViewerFace.coordIndex2 = face.v2 - coordsLen;
newViewerFace.coordIndex3 = face.v3 - coordsLen;
newViewerFace.n1 = faceNormal;
newViewerFace.n2 = faceNormal;
newViewerFace.n3 = faceNormal;
newViewerFace.uv1 = newLayer.faceUVs[face.v1 - coordsLen];
newViewerFace.uv2 = newLayer.faceUVs[face.v2 - coordsLen];
newViewerFace.uv3 = newLayer.faceUVs[face.v3 - coordsLen];
if (pathType == PathType.Linear)
{
newViewerFace.uv1.Flip();
newViewerFace.uv2.Flip();
newViewerFace.uv3.Flip();
}
viewerFaces.Add(newViewerFace);
}
}
} // for (int nodeIndex = 0; nodeIndex < path.pathNodes.Count; nodeIndex++)
}
/// <summary>
/// DEPRICATED - use Extrude(PathType.Linear) instead
/// Extrudes a profile along a straight line path. Used for prim types box, cylinder, and prism.
/// </summary>
public void ExtrudeLinear()
{
Extrude(PathType.Linear);
}
/// <summary>
/// DEPRICATED - use Extrude(PathType.Circular) instead
/// Extrude a profile into a circular path prim mesh. Used for prim types torus, tube, and ring.
/// </summary>
public void ExtrudeCircular()
{
Extrude(PathType.Circular);
}
private Coord SurfaceNormal(Coord c1, Coord c2, Coord c3)
{
var edge1 = new Coord(c2.X - c1.X, c2.Y - c1.Y, c2.Z - c1.Z);
var edge2 = new Coord(c3.X - c1.X, c3.Y - c1.Y, c3.Z - c1.Z);
var normal = Coord.Cross(edge1, edge2);
normal.Normalize();
return normal;
}
private Coord SurfaceNormal(Face face)
{
return SurfaceNormal(coords[face.v1], coords[face.v2], coords[face.v3]);
}
/// <summary>
/// Calculate the surface normal for a face in the list of faces
/// </summary>
/// <param name="faceIndex"></param>
/// <returns></returns>
public Coord SurfaceNormal(int faceIndex)
{
var numFaces = faces.Count;
if (faceIndex < 0 || faceIndex >= numFaces)
throw new Exception("faceIndex out of range");
return SurfaceNormal(faces[faceIndex]);
}
/// <summary>
/// Duplicates a PrimMesh object. All object properties are copied by value, including lists.
/// </summary>
/// <returns></returns>
public PrimMesh Copy()
{
var copy = new PrimMesh(sides, profileStart, profileEnd, hollow, hollowSides)
{
twistBegin = twistBegin,
twistEnd = twistEnd,
topShearX = topShearX,
topShearY = topShearY,
pathCutBegin = pathCutBegin,
pathCutEnd = pathCutEnd,
dimpleBegin = dimpleBegin,
dimpleEnd = dimpleEnd,
skew = skew,
holeSizeX = holeSizeX,
holeSizeY = holeSizeY,
taperX = taperX,
taperY = taperY,
radius = radius,
revolutions = revolutions,
stepsPerRevolution = stepsPerRevolution,
calcVertexNormals = calcVertexNormals,
normalsProcessed = normalsProcessed,
viewerMode = viewerMode,
numPrimFaces = numPrimFaces,
errorMessage = errorMessage,
coords = new List<Coord>(coords),
faces = new List<Face>(faces),
viewerFaces = new List<ViewerFace>(viewerFaces),
normals = new List<Coord>(normals)
};
return copy;
}
/// <summary>
/// Calculate surface normals for all of the faces in the list of faces in this mesh
/// </summary>
public void CalcNormals()
{
if (normalsProcessed)
return;
normalsProcessed = true;
var numFaces = faces.Count;
if (!calcVertexNormals)
normals = new List<Coord>();
for (var i = 0; i < numFaces; i++)
{
var face = faces[i];
normals.Add(SurfaceNormal(i).Normalize());
var normIndex = normals.Count - 1;
face.n1 = normIndex;
face.n2 = normIndex;
face.n3 = normIndex;
faces[i] = face;
}
}
/// <summary>
/// Adds a value to each XYZ vertex coordinate in the mesh
/// </summary>
/// <param name="x"></param>
/// <param name="y"></param>
/// <param name="z"></param>
public void AddPos(float x, float y, float z)
{
int i;
var numVerts = coords.Count;
Coord vert;
for (i = 0; i < numVerts; i++)
{
vert = coords[i];
vert.X += x;
vert.Y += y;
vert.Z += z;
coords[i] = vert;
}
if (viewerFaces != null)
{
var numViewerFaces = viewerFaces.Count;
for (i = 0; i < numViewerFaces; i++)
{
var v = viewerFaces[i];
v.AddPos(x, y, z);
viewerFaces[i] = v;
}
}
}
/// <summary>
/// Rotates the mesh
/// </summary>
/// <param name="q"></param>
public void AddRot(Quat q)
{
int i;
var numVerts = coords.Count;
for (i = 0; i < numVerts; i++)
coords[i] *= q;
if (normals != null)
{
var numNormals = normals.Count;
for (i = 0; i < numNormals; i++)
normals[i] *= q;
}
if (viewerFaces != null)
{
var numViewerFaces = viewerFaces.Count;
for (i = 0; i < numViewerFaces; i++)
{
var v = viewerFaces[i];
v.v1 *= q;
v.v2 *= q;
v.v3 *= q;
v.n1 *= q;
v.n2 *= q;
v.n3 *= q;
viewerFaces[i] = v;
}
}
}
#if VERTEX_INDEXER
public VertexIndexer GetVertexIndexer()
{
if (viewerMode && viewerFaces.Count > 0)
return new VertexIndexer(this);
return null;
}
#endif
/// <summary>
/// Scales the mesh
/// </summary>
/// <param name="x"></param>
/// <param name="y"></param>
/// <param name="z"></param>
public void Scale(float x, float y, float z)
{
int i;
var numVerts = coords.Count;
//Coord vert;
var m = new Coord(x, y, z);
for (i = 0; i < numVerts; i++)
coords[i] *= m;
if (viewerFaces != null)
{
var numViewerFaces = viewerFaces.Count;
for (i = 0; i < numViewerFaces; i++)
{
var v = viewerFaces[i];
v.v1 *= m;
v.v2 *= m;
v.v3 *= m;
viewerFaces[i] = v;
}
}
}
/// <summary>
/// Dumps the mesh to a Blender compatible "Raw" format file
/// </summary>
/// <param name="path"></param>
/// <param name="name"></param>
/// <param name="title"></param>
public void DumpRaw(string path, string name, string title)
{
if (path == null)
return;
var fileName = name + "_" + title + ".raw";
var completePath = System.IO.Path.Combine(path, fileName);
var sw = new StreamWriter(completePath);
for (var i = 0; i < faces.Count; i++)
{
var s = coords[faces[i].v1].ToString();
s += " " + coords[faces[i].v2];
s += " " + coords[faces[i].v3];
sw.WriteLine(s);
}
sw.Close();
}
}
}