* Fixed a typo in OpenJPEG.J2KLayerInfo (only affected debug display) git-svn-id: http://libopenmetaverse.googlecode.com/svn/libopenmetaverse/trunk@3118 52acb1d6-8a22-11de-b505-999d5b087335
625 lines
18 KiB
C#
625 lines
18 KiB
C#
/*
|
|
* CVS identifier:
|
|
*
|
|
* $Id: ArbROIMaskGenerator.java,v 1.4 2001/01/03 15:10:21 qtxjoas Exp $
|
|
*
|
|
* Class: ArbROIMaskGenerator
|
|
*
|
|
* Description: Generates masks when only rectangular ROIs exist
|
|
*
|
|
*
|
|
*
|
|
* COPYRIGHT:
|
|
*
|
|
* This software module was originally developed by Raphaël Grosbois and
|
|
* Diego Santa Cruz (Swiss Federal Institute of Technology-EPFL); Joel
|
|
* Askelöf (Ericsson Radio Systems AB); and Bertrand Berthelot, David
|
|
* Bouchard, Félix Henry, Gerard Mozelle and Patrice Onno (Canon Research
|
|
* Centre France S.A) in the course of development of the JPEG2000
|
|
* standard as specified by ISO/IEC 15444 (JPEG 2000 Standard). This
|
|
* software module is an implementation of a part of the JPEG 2000
|
|
* Standard. Swiss Federal Institute of Technology-EPFL, Ericsson Radio
|
|
* Systems AB and Canon Research Centre France S.A (collectively JJ2000
|
|
* Partners) agree not to assert against ISO/IEC and users of the JPEG
|
|
* 2000 Standard (Users) any of their rights under the copyright, not
|
|
* including other intellectual property rights, for this software module
|
|
* with respect to the usage by ISO/IEC and Users of this software module
|
|
* or modifications thereof for use in hardware or software products
|
|
* claiming conformance to the JPEG 2000 Standard. Those intending to use
|
|
* this software module in hardware or software products are advised that
|
|
* their use may infringe existing patents. The original developers of
|
|
* this software module, JJ2000 Partners and ISO/IEC assume no liability
|
|
* for use of this software module or modifications thereof. No license
|
|
* or right to this software module is granted for non JPEG 2000 Standard
|
|
* conforming products. JJ2000 Partners have full right to use this
|
|
* software module for his/her own purpose, assign or donate this
|
|
* software module to any third party and to inhibit third parties from
|
|
* using this software module for non JPEG 2000 Standard conforming
|
|
* products. This copyright notice must be included in all copies or
|
|
* derivative works of this software module.
|
|
*
|
|
* Copyright (c) 1999/2000 JJ2000 Partners.
|
|
* */
|
|
using System;
|
|
using CSJ2K.j2k.quantization.quantizer;
|
|
using CSJ2K.j2k.codestream.writer;
|
|
using CSJ2K.j2k.wavelet.analysis;
|
|
using CSJ2K.j2k.quantization;
|
|
using CSJ2K.j2k.image.input;
|
|
using CSJ2K.j2k.wavelet;
|
|
using CSJ2K.j2k.image;
|
|
using CSJ2K.j2k.util;
|
|
using CSJ2K.j2k.roi;
|
|
namespace CSJ2K.j2k.roi.encoder
|
|
{
|
|
|
|
/// <summary> This class generates the ROI bit-mask when, at least, one ROI is not
|
|
/// rectangular. In this case, the fast ROI bit-mask algorithm generation can
|
|
/// not be used.
|
|
///
|
|
/// <P>The values are calculated from the scaling factors of the ROIs. The
|
|
/// values with which to scale are equal to u-umin where umin is the lowest
|
|
/// scaling factor within the block. The umin value is sent to the entropy
|
|
/// coder to be used for scaling the distortion values.
|
|
///
|
|
/// </summary>
|
|
/// <seealso cref="ROIMaskGenerator">
|
|
///
|
|
/// </seealso>
|
|
/// <seealso cref="ArbROIMaskGenerator">
|
|
///
|
|
/// </seealso>
|
|
public class ArbROIMaskGenerator:ROIMaskGenerator
|
|
{
|
|
|
|
/// <summary>The source of quantized wavelet transform coefficients </summary>
|
|
private Quantizer src;
|
|
|
|
/// <summary>The ROI mask for the current tile for all components</summary>
|
|
private int[][] roiMask;
|
|
|
|
/// <summary>The low frequency part of a mask line </summary>
|
|
private int[] maskLineLow;
|
|
|
|
/// <summary>The High frequency part of a mask line </summary>
|
|
private int[] maskLineHigh;
|
|
|
|
/// <summary>A line or column of the mask with padding </summary>
|
|
private int[] paddedMaskLine;
|
|
|
|
/// <summary>Flag indicating if any ROI was found to be in this tile </summary>
|
|
new private bool roiInTile;
|
|
|
|
/// <summary> The constructor of the arbitrary mask generator
|
|
///
|
|
/// </summary>
|
|
/// <param name="rois">The ROI info.
|
|
///
|
|
/// </param>
|
|
/// <param name="nrc">The number of components
|
|
///
|
|
/// </param>
|
|
/// <param name="src">The quantizer module
|
|
///
|
|
/// </param>
|
|
public ArbROIMaskGenerator(ROI[] rois, int nrc, Quantizer src):base(rois, nrc)
|
|
{
|
|
roiMask = new int[nrc][];
|
|
this.src = src;
|
|
}
|
|
|
|
/// <summary> This functions gets a DataBlk the size of the current code-block an
|
|
/// fills this block with the ROI mask.
|
|
///
|
|
/// <P> In order to get the mask for a particular Subband, the subband tree
|
|
/// is traversed and at each decomposition, the ROI masks are computed.
|
|
///
|
|
/// <P> The widths of the synthesis filters corresponding to the wavelet
|
|
/// filters used in the wavelet transform are used to expand the ROI masks
|
|
/// in the decompositions.
|
|
///
|
|
/// </summary>
|
|
/// <param name="db">The data block that is to be filled with the mask
|
|
///
|
|
/// </param>
|
|
/// <param name="sb">The root of the subband tree to which db belongs
|
|
///
|
|
/// </param>
|
|
/// <param name="magbits">The max number of magnitude bits in any code-block
|
|
///
|
|
/// </param>
|
|
/// <param name="c">The number of the component
|
|
///
|
|
/// </param>
|
|
/// <returns> Whether or not a mask was needed for this tile
|
|
///
|
|
/// </returns>
|
|
public override bool getROIMask(DataBlkInt db, Subband sb, int magbits, int c)
|
|
{
|
|
int x = db.ulx;
|
|
int y = db.uly;
|
|
int w = db.w;
|
|
int h = db.h;
|
|
int tilew = sb.w;
|
|
int tileh = sb.h;
|
|
int[] maskData = (int[]) db.Data;
|
|
int i, j, k, bi, wrap;
|
|
|
|
// If the ROI mask has not been calculated for this tile and
|
|
// component, do so now.
|
|
if (!tileMaskMade[c])
|
|
{
|
|
makeMask(sb, magbits, c);
|
|
tileMaskMade[c] = true;
|
|
}
|
|
if (!roiInTile)
|
|
return false;
|
|
|
|
int[] mask = roiMask[c]; // local copy
|
|
|
|
// Copy relevant part of the ROI mask to the datablock
|
|
i = (y + h - 1) * tilew + x + w - 1;
|
|
bi = w * h - 1;
|
|
wrap = tilew - w;
|
|
for (j = h; j > 0; j--)
|
|
{
|
|
for (k = w; k > 0; k--, i--, bi--)
|
|
{
|
|
maskData[bi] = mask[i];
|
|
}
|
|
i -= wrap;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// <summary> This function returns the relevant data of the mask generator
|
|
///
|
|
/// </summary>
|
|
public override System.String ToString()
|
|
{
|
|
return ("Fast rectangular ROI mask generator");
|
|
}
|
|
|
|
/// <summary> This function generates the ROI mask for one tile-component.
|
|
///
|
|
/// <P> Once the mask is generated in the pixel domain. it is decomposed
|
|
/// following the same decomposition scheme as the wavelet transform.
|
|
///
|
|
/// </summary>
|
|
/// <param name="sb">The root of the subband tree used in the decomposition
|
|
///
|
|
/// </param>
|
|
/// <param name="magbits">The max number of magnitude bits in any code-block
|
|
///
|
|
/// </param>
|
|
/// <param name="c">component number
|
|
/// </param>
|
|
public override void makeMask(Subband sb, int magbits, int c)
|
|
{
|
|
int[] mask; // local copy
|
|
ROI[] rois = this.roi_array; // local copy
|
|
int i, j, k, r, maxj; // mink, minj removed
|
|
int lrx, lry;
|
|
int x, y, w, h;
|
|
int cx, cy, rad;
|
|
int wrap;
|
|
int curScalVal;
|
|
int tileulx = sb.ulcx;
|
|
int tileuly = sb.ulcy;
|
|
int tilew = sb.w;
|
|
int tileh = sb.h;
|
|
int lineLen = (tilew > tileh)?tilew:tileh;
|
|
|
|
// Make sure there is a sufficiently large mask buffer
|
|
if (roiMask[c] == null || (roiMask[c].Length < (tilew * tileh)))
|
|
{
|
|
roiMask[c] = new int[tilew * tileh];
|
|
mask = roiMask[c];
|
|
}
|
|
else
|
|
{
|
|
mask = roiMask[c];
|
|
for (i = tilew * tileh - 1; i >= 0; i--)
|
|
mask[i] = 0;
|
|
}
|
|
|
|
// Make sure there are sufficiently large line buffers
|
|
if (maskLineLow == null || (maskLineLow.Length < (lineLen + 1) / 2))
|
|
maskLineLow = new int[(lineLen + 1) / 2];
|
|
if (maskLineHigh == null || (maskLineHigh.Length < (lineLen + 1) / 2))
|
|
maskLineHigh = new int[(lineLen + 1) / 2];
|
|
|
|
roiInTile = false;
|
|
// Generate ROIs in pixel domain:
|
|
for (r = rois.Length - 1; r >= 0; r--)
|
|
{
|
|
if (rois[r].comp == c)
|
|
{
|
|
curScalVal = magbits;
|
|
|
|
if (rois[r].arbShape)
|
|
{
|
|
ImgReaderPGM maskPGM = rois[r].maskPGM; // Local copy
|
|
|
|
if ((src.ImgWidth != maskPGM.ImgWidth) || (src.ImgHeight != maskPGM.ImgHeight))
|
|
throw new System.ArgumentException("Input image and" + " ROI mask must " + "have the same " + "size");
|
|
x = src.ImgULX;
|
|
y = src.ImgULY;
|
|
lrx = x + src.ImgWidth - 1;
|
|
lry = y + src.ImgHeight - 1;
|
|
if ((x > tileulx + tilew) || (y > tileuly + tileh) || (lrx < tileulx) || (lry < tileuly))
|
|
// Roi not in tile
|
|
continue;
|
|
|
|
// Check bounds
|
|
x -= tileulx;
|
|
lrx -= tileulx;
|
|
y -= tileuly;
|
|
lry -= tileuly;
|
|
|
|
int offx = 0;
|
|
int offy = 0;
|
|
if (x < 0)
|
|
{
|
|
offx = - x;
|
|
x = 0;
|
|
}
|
|
if (y < 0)
|
|
{
|
|
offy = - y;
|
|
y = 0;
|
|
}
|
|
w = (lrx > (tilew - 1))?tilew - x:lrx + 1 - x;
|
|
h = (lry > (tileh - 1))?tileh - y:lry + 1 - y;
|
|
|
|
|
|
// Get shape line by line to reduce memory
|
|
DataBlkInt srcblk = new DataBlkInt();
|
|
int mDcOff = - ImgReaderPGM.DC_OFFSET;
|
|
int nROIcoeff = 0;
|
|
int[] src_data;
|
|
srcblk.ulx = offx;
|
|
srcblk.w = w;
|
|
srcblk.h = 1;
|
|
|
|
i = (y + h - 1) * tilew + x + w - 1;
|
|
maxj = w;
|
|
wrap = tilew - maxj;
|
|
for (k = h; k > 0; k--)
|
|
{
|
|
srcblk.uly = offy + k - 1;
|
|
srcblk = (DataBlkInt) maskPGM.getInternCompData(srcblk, 0);
|
|
src_data = srcblk.DataInt;
|
|
|
|
for (j = maxj; j > 0; j--, i--)
|
|
{
|
|
if (src_data[j - 1] != mDcOff)
|
|
{
|
|
mask[i] = curScalVal;
|
|
nROIcoeff++;
|
|
}
|
|
}
|
|
i -= wrap;
|
|
}
|
|
|
|
if (nROIcoeff != 0)
|
|
{
|
|
roiInTile = true;
|
|
}
|
|
}
|
|
else if (rois[r].rect)
|
|
{
|
|
// Rectangular ROI
|
|
x = rois[r].ulx;
|
|
y = rois[r].uly;
|
|
lrx = rois[r].w + x - 1;
|
|
lry = rois[r].h + y - 1;
|
|
|
|
if ((x > tileulx + tilew) || (y > tileuly + tileh) || (lrx < tileulx) || (lry < tileuly))
|
|
// Roi not in tile
|
|
continue;
|
|
|
|
roiInTile = true;
|
|
|
|
// Check bounds
|
|
x -= tileulx;
|
|
lrx -= tileulx;
|
|
y -= tileuly;
|
|
lry -= tileuly;
|
|
|
|
x = (x < 0)?0:x;
|
|
y = (y < 0)?0:y;
|
|
w = (lrx > (tilew - 1))?tilew - x:lrx + 1 - x;
|
|
h = (lry > (tileh - 1))?tileh - y:lry + 1 - y;
|
|
|
|
i = (y + h - 1) * tilew + x + w - 1;
|
|
maxj = w;
|
|
wrap = tilew - maxj;
|
|
for (k = h; k > 0; k--)
|
|
{
|
|
for (j = maxj; j > 0; j--, i--)
|
|
{
|
|
mask[i] = curScalVal;
|
|
}
|
|
i -= wrap;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// Non-rectangular ROI. So far only circular case
|
|
cx = rois[r].x - tileulx;
|
|
cy = rois[r].y - tileuly;
|
|
rad = rois[r].r;
|
|
i = tileh * tilew - 1;
|
|
for (k = tileh - 1; k >= 0; k--)
|
|
{
|
|
for (j = tilew - 1; j >= 0; j--, i--)
|
|
{
|
|
if (((j - cx) * (j - cx) + (k - cy) * (k - cy) < rad * rad))
|
|
{
|
|
mask[i] = curScalVal;
|
|
roiInTile = true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// If wavelet transform is used
|
|
if (sb.isNode)
|
|
{
|
|
// Decompose the mask according to the subband tree
|
|
// Calculate size of padded line buffer
|
|
WaveletFilter vFilter = sb.VerWFilter;
|
|
WaveletFilter hFilter = sb.HorWFilter;
|
|
int lvsup = vFilter.SynLowNegSupport + vFilter.SynLowPosSupport;
|
|
int hvsup = vFilter.SynHighNegSupport + vFilter.SynHighPosSupport;
|
|
int lhsup = hFilter.SynLowNegSupport + hFilter.SynLowPosSupport;
|
|
int hhsup = hFilter.SynHighNegSupport + hFilter.SynHighPosSupport;
|
|
lvsup = (lvsup > hvsup)?lvsup:hvsup;
|
|
lhsup = (lhsup > hhsup)?lhsup:hhsup;
|
|
lvsup = (lvsup > lhsup)?lvsup:lhsup;
|
|
paddedMaskLine = new int[lineLen + lvsup];
|
|
|
|
if (roiInTile)
|
|
decomp(sb, tilew, tileh, c);
|
|
}
|
|
}
|
|
|
|
/// <summary> This function decomposes the mask for a node in the subband tree.
|
|
/// after the mask is decomposed for a node, this function is called for
|
|
/// the children of the subband. The decomposition is done line by line
|
|
/// and column by column
|
|
///
|
|
/// </summary>
|
|
/// <param name="sb">The subband that is to be used for the decomposition
|
|
///
|
|
/// </param>
|
|
/// <param name="tilew">The width of the current tile
|
|
///
|
|
/// </param>
|
|
/// <param name="tileh">The height of the current tile
|
|
///
|
|
/// </param>
|
|
/// <param name="c">component number
|
|
/// </param>
|
|
private void decomp(Subband sb, int tilew, int tileh, int c)
|
|
{
|
|
int ulx = sb.ulx;
|
|
int uly = sb.uly;
|
|
int w = sb.w;
|
|
int h = sb.h;
|
|
int scalVal, maxVal = 0;
|
|
int j, k, s, mi = 0, pin; // i, hi, li removed
|
|
int hmax, lmax; // smax removed
|
|
int lineoffs; // wrap, lastlow removed
|
|
int[] mask = roiMask[c]; // local copy
|
|
int[] low = maskLineLow; // local copy
|
|
int[] high = maskLineHigh; // local copy
|
|
int[] padLine = paddedMaskLine; // local copy
|
|
int highFirst = 0;
|
|
int lastpin;
|
|
|
|
|
|
if (!sb.isNode)
|
|
return ;
|
|
|
|
// HORIZONTAL DECOMPOSITION
|
|
|
|
// Calculate number of high and low samples after decomposition
|
|
// and get support for low and high filters
|
|
WaveletFilter filter = sb.HorWFilter;
|
|
int lnSup = filter.SynLowNegSupport;
|
|
int hnSup = filter.SynHighNegSupport;
|
|
int lpSup = filter.SynLowPosSupport;
|
|
int hpSup = filter.SynHighPosSupport;
|
|
int lsup = lnSup + lpSup + 1;
|
|
int hsup = hnSup + hpSup + 1;
|
|
|
|
// Calculate number of high/low coeffis in subbands
|
|
highFirst = sb.ulcx % 2;
|
|
if (sb.w % 2 == 0)
|
|
{
|
|
lmax = w / 2 - 1;
|
|
hmax = lmax;
|
|
}
|
|
else
|
|
{
|
|
if (highFirst == 0)
|
|
{
|
|
lmax = (w + 1) / 2 - 1;
|
|
hmax = w / 2 - 1;
|
|
}
|
|
else
|
|
{
|
|
hmax = (w + 1) / 2 - 1;
|
|
lmax = w / 2 - 1;
|
|
}
|
|
}
|
|
|
|
int maxnSup = (lnSup > hnSup)?lnSup:hnSup; // Maximum negative support
|
|
int maxpSup = (lpSup > hpSup)?lpSup:hpSup; // Maximum positive support
|
|
|
|
|
|
// Set padding to 0
|
|
for (pin = maxnSup - 1; pin >= 0; pin--)
|
|
padLine[pin] = 0;
|
|
for (pin = maxnSup + w - 1 + maxpSup; pin >= w; pin--)
|
|
padLine[pin] = 0;
|
|
|
|
// Do decomposition of all lines
|
|
lineoffs = (uly + h) * tilew + ulx + w - 1;
|
|
for (j = h - 1; j >= 0; j--)
|
|
{
|
|
lineoffs -= tilew;
|
|
// Get the line to transform from the mask
|
|
mi = lineoffs;
|
|
for (k = w, pin = w - 1 + maxnSup; k > 0; k--, mi--, pin--)
|
|
{
|
|
padLine[pin] = mask[mi];
|
|
}
|
|
|
|
lastpin = maxnSup + highFirst + 2 * lmax + lpSup;
|
|
for (k = lmax; k >= 0; k--, lastpin -= 2)
|
|
{
|
|
// Low frequency samples
|
|
pin = lastpin;
|
|
for (s = lsup; s > 0; s--, pin--)
|
|
{
|
|
scalVal = padLine[pin];
|
|
if (scalVal > maxVal)
|
|
maxVal = scalVal;
|
|
}
|
|
low[k] = maxVal;
|
|
maxVal = 0;
|
|
}
|
|
lastpin = maxnSup - highFirst + 2 * hmax + 1 + hpSup;
|
|
for (k = hmax; k >= 0; k--, lastpin -= 2)
|
|
{
|
|
// High frequency samples
|
|
pin = lastpin;
|
|
for (s = hsup; s > 0; s--, pin--)
|
|
{
|
|
scalVal = padLine[pin];
|
|
if (scalVal > maxVal)
|
|
maxVal = scalVal;
|
|
}
|
|
high[k] = maxVal;
|
|
maxVal = 0;
|
|
}
|
|
// Put the lows and highs back
|
|
mi = lineoffs;
|
|
for (k = hmax; k >= 0; k--, mi--)
|
|
{
|
|
mask[mi] = high[k];
|
|
}
|
|
for (k = lmax; k >= 0; k--, mi--)
|
|
{
|
|
mask[mi] = low[k];
|
|
}
|
|
}
|
|
|
|
// VERTICAL DECOMPOSITION
|
|
|
|
// Calculate number of high and low samples after decomposition
|
|
// and get support for low and high filters
|
|
filter = sb.VerWFilter;
|
|
lnSup = filter.SynLowNegSupport;
|
|
hnSup = filter.SynHighNegSupport;
|
|
lpSup = filter.SynLowPosSupport;
|
|
hpSup = filter.SynHighPosSupport;
|
|
lsup = lnSup + lpSup + 1;
|
|
hsup = hnSup + hpSup + 1;
|
|
|
|
// Calculate number of high/low coeffs in subbands
|
|
highFirst = sb.ulcy % 2;
|
|
if (sb.h % 2 == 0)
|
|
{
|
|
lmax = h / 2 - 1;
|
|
hmax = lmax;
|
|
}
|
|
else
|
|
{
|
|
if (sb.ulcy % 2 == 0)
|
|
{
|
|
lmax = (h + 1) / 2 - 1;
|
|
hmax = h / 2 - 1;
|
|
}
|
|
else
|
|
{
|
|
hmax = (h + 1) / 2 - 1;
|
|
lmax = h / 2 - 1;
|
|
}
|
|
}
|
|
|
|
maxnSup = (lnSup > hnSup)?lnSup:hnSup; // Maximum negative support
|
|
maxpSup = (lpSup > hpSup)?lpSup:hpSup; // Maximum positive support
|
|
|
|
// Set padding to 0
|
|
for (pin = maxnSup - 1; pin >= 0; pin--)
|
|
padLine[pin] = 0;
|
|
for (pin = maxnSup + h - 1 + maxpSup; pin >= h; pin--)
|
|
padLine[pin] = 0;
|
|
|
|
// Do decomposition of all columns
|
|
lineoffs = (uly + h - 1) * tilew + ulx + w;
|
|
for (j = w - 1; j >= 0; j--)
|
|
{
|
|
lineoffs--;
|
|
// Get the line to transform from the mask
|
|
mi = lineoffs;
|
|
for (k = h, pin = k - 1 + maxnSup; k > 0; k--, mi -= tilew, pin--)
|
|
{
|
|
padLine[pin] = mask[mi];
|
|
}
|
|
lastpin = maxnSup + highFirst + 2 * lmax + lpSup;
|
|
for (k = lmax; k >= 0; k--, lastpin -= 2)
|
|
{
|
|
// Low frequency samples
|
|
pin = lastpin;
|
|
for (s = lsup; s > 0; s--, pin--)
|
|
{
|
|
scalVal = padLine[pin];
|
|
if (scalVal > maxVal)
|
|
maxVal = scalVal;
|
|
}
|
|
low[k] = maxVal;
|
|
maxVal = 0;
|
|
}
|
|
lastpin = maxnSup - highFirst + 2 * hmax + 1 + hpSup;
|
|
for (k = hmax; k >= 0; k--, lastpin -= 2)
|
|
{
|
|
// High frequency samples
|
|
pin = lastpin;
|
|
for (s = hsup; s > 0; s--, pin--)
|
|
{
|
|
scalVal = padLine[pin];
|
|
if (scalVal > maxVal)
|
|
maxVal = scalVal;
|
|
}
|
|
high[k] = maxVal;
|
|
maxVal = 0;
|
|
}
|
|
// Put the lows and highs back
|
|
mi = lineoffs;
|
|
for (k = hmax; k >= 0; k--, mi -= tilew)
|
|
{
|
|
mask[mi] = high[k];
|
|
}
|
|
for (k = lmax; k >= 0; k--, mi -= tilew)
|
|
{
|
|
mask[mi] = low[k];
|
|
}
|
|
}
|
|
|
|
if (sb.isNode)
|
|
{
|
|
decomp(sb.HH, tilew, tileh, c);
|
|
decomp(sb.LH, tilew, tileh, c);
|
|
decomp(sb.HL, tilew, tileh, c);
|
|
decomp(sb.LL, tilew, tileh, c);
|
|
}
|
|
}
|
|
}
|
|
} |