Files
libremetaverse/libsecondlife/include/boost/asio/detail/kqueue_reactor.hpp
2006-06-08 14:47:51 +00:00

508 lines
16 KiB
C++

//
// kqueue_reactor.hpp
// ~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2005 Christopher M. Kohlhoff (chris at kohlhoff dot com)
// Copyright (c) 2005 Stefan Arentz (stefan at soze dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef BOOST_ASIO_DETAIL_KQUEUE_REACTOR_HPP
#define BOOST_ASIO_DETAIL_KQUEUE_REACTOR_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include <boost/asio/detail/push_options.hpp>
#if defined(__MACH__) && defined(__APPLE__)
// Define this to indicate that epoll is supported on the target platform.
#define BOOST_ASIO_HAS_KQUEUE_REACTOR 1
#include <boost/asio/detail/push_options.hpp>
#include <cstddef>
#include <sys/types.h>
#include <sys/event.h>
#include <sys/time.h>
#include <boost/config.hpp>
#include <boost/date_time/posix_time/posix_time_types.hpp>
#include <boost/throw_exception.hpp>
#include <boost/asio/detail/pop_options.hpp>
#include <boost/asio/system_exception.hpp>
#include <boost/asio/detail/bind_handler.hpp>
#include <boost/asio/detail/hash_map.hpp>
#include <boost/asio/detail/mutex.hpp>
#include <boost/asio/detail/noncopyable.hpp>
#include <boost/asio/detail/task_demuxer_service.hpp>
#include <boost/asio/detail/thread.hpp>
#include <boost/asio/detail/reactor_op_queue.hpp>
#include <boost/asio/detail/reactor_timer_queue.hpp>
#include <boost/asio/detail/select_interrupter.hpp>
#include <boost/asio/detail/signal_blocker.hpp>
#include <boost/asio/detail/socket_types.hpp>
namespace boost {
namespace asio {
namespace detail {
template <bool Own_Thread>
class kqueue_reactor
: private noncopyable
{
public:
// Constructor.
template <typename Demuxer>
kqueue_reactor(Demuxer&)
: mutex_(),
kqueue_fd_(do_kqueue_create()),
wait_in_progress_(false),
interrupter_(),
read_op_queue_(),
write_op_queue_(),
except_op_queue_(),
pending_cancellations_(),
stop_thread_(false),
thread_(0)
{
// Start the reactor's internal thread only if needed.
if (Own_Thread)
{
boost::asio::detail::signal_blocker sb;
thread_ = new boost::asio::detail::thread(
bind_handler(&kqueue_reactor::call_run_thread, this));
}
// Add the interrupter's descriptor to the kqueue.
struct kevent event;
EV_SET(&event, interrupter_.read_descriptor(),
EVFILT_READ, EV_ADD, 0, 0, 0);
::kevent(kqueue_fd_, &event, 1, 0, 0, 0);
}
// Destructor.
~kqueue_reactor()
{
if (thread_)
{
boost::asio::detail::mutex::scoped_lock lock(mutex_);
stop_thread_ = true;
lock.unlock();
interrupter_.interrupt();
thread_->join();
delete thread_;
}
close(kqueue_fd_);
}
// Start a new read operation. The handler object will be invoked when the
// given descriptor is ready to be read, or an error has occurred.
template <typename Handler>
void start_read_op(socket_type descriptor, Handler handler)
{
boost::asio::detail::mutex::scoped_lock lock(mutex_);
if (read_op_queue_.enqueue_operation(descriptor, handler))
{
struct kevent event;
EV_SET(&event, descriptor, EVFILT_READ, EV_ADD, 0, 0, 0);
if (::kevent(kqueue_fd_, &event, 1, 0, 0, 0) == -1)
{
int error = errno;
read_op_queue_.dispatch_all_operations(descriptor, error);
}
}
}
// Start a new write operation. The handler object will be invoked when the
// given descriptor is ready to be written, or an error has occurred.
template <typename Handler>
void start_write_op(socket_type descriptor, Handler handler)
{
boost::asio::detail::mutex::scoped_lock lock(mutex_);
if (write_op_queue_.enqueue_operation(descriptor, handler))
{
struct kevent event;
EV_SET(&event, descriptor, EVFILT_WRITE, EV_ADD, 0, 0, 0);
if (::kevent(kqueue_fd_, &event, 1, 0, 0, 0) == -1)
{
int error = errno;
write_op_queue_.dispatch_all_operations(descriptor, error);
}
}
}
// Start a new exception operation. The handler object will be invoked when
// the given descriptor has exception information, or an error has occurred.
template <typename Handler>
void start_except_op(socket_type descriptor, Handler handler)
{
boost::asio::detail::mutex::scoped_lock lock(mutex_);
if (except_op_queue_.enqueue_operation(descriptor, handler))
{
struct kevent event;
if (read_op_queue_.has_operation(descriptor))
EV_SET(&event, descriptor, EVFILT_READ, EV_ADD, 0, 0, 0);
else
EV_SET(&event, descriptor, EVFILT_READ, EV_ADD, EV_OOBAND, 0, 0);
if (::kevent(kqueue_fd_, &event, 1, 0, 0, 0) == -1)
{
int error = errno;
except_op_queue_.dispatch_all_operations(descriptor, error);
}
}
}
// Start new write and exception operations. The handler object will be
// invoked when the given descriptor is ready for writing or has exception
// information available, or an error has occurred.
template <typename Handler>
void start_write_and_except_ops(socket_type descriptor, Handler handler)
{
boost::asio::detail::mutex::scoped_lock lock(mutex_);
if (write_op_queue_.enqueue_operation(descriptor, handler))
{
struct kevent event;
EV_SET(&event, descriptor, EVFILT_WRITE, EV_ADD, 0, 0, 0);
if (::kevent(kqueue_fd_, &event, 1, 0, 0, 0) == -1)
{
int error = errno;
write_op_queue_.dispatch_all_operations(descriptor, error);
}
}
if (except_op_queue_.enqueue_operation(descriptor, handler))
{
struct kevent event;
if (read_op_queue_.has_operation(descriptor))
EV_SET(&event, descriptor, EVFILT_READ, EV_ADD, 0, 0, 0);
else
EV_SET(&event, descriptor, EVFILT_READ, EV_ADD, EV_OOBAND, 0, 0);
if (::kevent(kqueue_fd_, &event, 1, 0, 0, 0) == -1)
{
int error = errno;
except_op_queue_.dispatch_all_operations(descriptor, error);
write_op_queue_.dispatch_all_operations(descriptor, error);
}
}
}
// Cancel all operations associated with the given descriptor. The
// handlers associated with the descriptor will be invoked with the
// operation_aborted error.
void cancel_ops(socket_type descriptor)
{
boost::asio::detail::mutex::scoped_lock lock(mutex_);
cancel_ops_unlocked(descriptor);
}
// Enqueue cancellation of all operations associated with the given
// descriptor. The handlers associated with the descriptor will be invoked
// with the operation_aborted error. This function does not acquire the
// select_reactor's mutex, and so should only be used from within a reactor
// handler.
void enqueue_cancel_ops_unlocked(socket_type descriptor)
{
pending_cancellations_.insert(
pending_cancellations_map::value_type(descriptor, true));
}
// Cancel any operations that are running against the descriptor and remove
// its registration from the reactor.
void close_descriptor(socket_type descriptor)
{
boost::asio::detail::mutex::scoped_lock lock(mutex_);
// Remove the descriptor from kqueue.
struct kevent event[2];
EV_SET(&event[0], descriptor, EVFILT_READ, EV_DELETE, 0, 0, 0);
EV_SET(&event[1], descriptor, EVFILT_WRITE, EV_DELETE, 0, 0, 0);
::kevent(kqueue_fd_, event, 2, 0, 0, 0);
// Cancel any outstanding operations associated with the descriptor.
cancel_ops_unlocked(descriptor);
}
// Schedule a timer to expire at the specified absolute time. The
// do_operation function of the handler object will be invoked when the timer
// expires. Returns a token that may be used for cancelling the timer, but it
// is not valid after the timer expires.
template <typename Handler>
void schedule_timer(const boost::posix_time::ptime& time,
Handler handler, void* token)
{
boost::asio::detail::mutex::scoped_lock lock(mutex_);
if (timer_queue_.enqueue_timer(time, handler, token))
interrupter_.interrupt();
}
// Cancel the timer associated with the given token. Returns the number of
// handlers that have been posted or dispatched.
std::size_t cancel_timer(void* token)
{
boost::asio::detail::mutex::scoped_lock lock(mutex_);
return timer_queue_.cancel_timer(token);
}
private:
friend class task_demuxer_service<kqueue_reactor<Own_Thread> >;
// Reset the select loop before a new run.
void reset()
{
boost::asio::detail::mutex::scoped_lock lock(mutex_);
stop_thread_ = false;
interrupter_.reset();
}
// Run the epoll loop.
void run()
{
boost::asio::detail::mutex::scoped_lock lock(mutex_);
// Dispatch any operation cancellations that were made while the select
// loop was not running.
read_op_queue_.dispatch_cancellations();
write_op_queue_.dispatch_cancellations();
except_op_queue_.dispatch_cancellations();
bool stop = false;
while (!stop && !stop_thread_)
{
timespec timeout_buf;
timespec* timeout = get_timeout(timeout_buf);
wait_in_progress_ = true;
lock.unlock();
// Block on the kqueue descriptor.
struct kevent events[128];
int num_events = kevent(kqueue_fd_, 0, 0, events, 128, timeout);
lock.lock();
wait_in_progress_ = false;
// Block signals while dispatching operations.
boost::asio::detail::signal_blocker sb;
// Dispatch the waiting events.
for (int i = 0; i < num_events; ++i)
{
int descriptor = events[i].ident;
if (descriptor == interrupter_.read_descriptor())
{
stop = interrupter_.reset();
}
else if (events[i].filter == EVFILT_READ)
{
// Dispatch operations associated with the descriptor.
bool more_reads = false;
bool more_except = false;
if (events[i].flags & EV_ERROR)
{
int error = events[i].data;
except_op_queue_.dispatch_all_operations(descriptor, error);
read_op_queue_.dispatch_all_operations(descriptor, error);
}
else if (events[i].flags & EV_OOBAND)
{
more_except = except_op_queue_.dispatch_operation(descriptor, 0);
if (events[i].data > 0)
more_reads = read_op_queue_.dispatch_operation(descriptor, 0);
else
more_reads = read_op_queue_.has_operation(descriptor);
}
else
{
more_reads = read_op_queue_.dispatch_operation(descriptor, 0);
more_except = except_op_queue_.has_operation(descriptor);
}
// Update the descriptor in the kqueue.
struct kevent event;
if (more_reads)
EV_SET(&event, descriptor, EVFILT_READ, EV_ADD, 0, 0, 0);
else if (more_except)
EV_SET(&event, descriptor, EVFILT_READ, EV_ADD, EV_OOBAND, 0, 0);
else
EV_SET(&event, descriptor, EVFILT_READ, EV_DELETE, 0, 0, 0);
if (::kevent(kqueue_fd_, &event, 1, 0, 0, 0) == -1)
{
int error = errno;
except_op_queue_.dispatch_all_operations(descriptor, error);
read_op_queue_.dispatch_all_operations(descriptor, error);
}
}
else if (events[i].filter == EVFILT_WRITE)
{
// Dispatch operations associated with the descriptor.
bool more_writes = false;
if (events[i].flags & EV_ERROR)
{
int error = events[i].data;
write_op_queue_.dispatch_all_operations(descriptor, error);
}
else
{
more_writes = write_op_queue_.dispatch_operation(descriptor, 0);
}
// Update the descriptor in the kqueue.
struct kevent event;
if (more_writes)
EV_SET(&event, descriptor, EVFILT_WRITE, EV_ADD, 0, 0, 0);
else
EV_SET(&event, descriptor, EVFILT_WRITE, EV_DELETE, 0, 0, 0);
if (::kevent(kqueue_fd_, &event, 1, 0, 0, 0) == -1)
{
int error = errno;
write_op_queue_.dispatch_all_operations(descriptor, error);
}
}
}
read_op_queue_.dispatch_cancellations();
write_op_queue_.dispatch_cancellations();
except_op_queue_.dispatch_cancellations();
timer_queue_.dispatch_timers(
boost::posix_time::microsec_clock::universal_time());
// Issue any pending cancellations.
pending_cancellations_map::iterator i = pending_cancellations_.begin();
while (i != pending_cancellations_.end())
{
cancel_ops_unlocked(i->first);
++i;
}
pending_cancellations_.clear();
}
}
// Run the select loop in the thread.
void run_thread()
{
boost::asio::detail::mutex::scoped_lock lock(mutex_);
while (!stop_thread_)
{
lock.unlock();
run();
lock.lock();
}
}
// Entry point for the select loop thread.
static void call_run_thread(kqueue_reactor* reactor)
{
reactor->run_thread();
}
// Interrupt the select loop.
void interrupt()
{
interrupter_.interrupt();
}
// Create the kqueue file descriptor. Throws an exception if the descriptor
// cannot be created.
static int do_kqueue_create()
{
int fd = kqueue();
if (fd == -1)
{
system_exception e("kqueue", errno);
boost::throw_exception(e);
}
return fd;
}
// Get the timeout value for the kevent call.
timespec* get_timeout(timespec& ts)
{
if (timer_queue_.empty())
return 0;
boost::posix_time::ptime now
= boost::posix_time::microsec_clock::universal_time();
boost::posix_time::ptime earliest_timer;
timer_queue_.get_earliest_time(earliest_timer);
if (now < earliest_timer)
{
boost::posix_time::time_duration timeout = earliest_timer - now;
ts.tv_sec = timeout.total_seconds();
ts.tv_nsec = timeout.total_nanoseconds() % 1000000000;
}
else
{
ts.tv_sec = 0;
ts.tv_nsec = 0;
}
return &ts;
}
// Cancel all operations associated with the given descriptor. The do_cancel
// function of the handler objects will be invoked. This function does not
// acquire the epoll_reactor's mutex.
void cancel_ops_unlocked(socket_type descriptor)
{
bool interrupt = read_op_queue_.cancel_operations(descriptor);
interrupt = write_op_queue_.cancel_operations(descriptor) || interrupt;
interrupt = except_op_queue_.cancel_operations(descriptor) || interrupt;
if (interrupt)
interrupter_.interrupt();
}
// Mutex to protect access to internal data.
boost::asio::detail::mutex mutex_;
// The epoll file descriptor.
int kqueue_fd_;
// Whether the kqueue wait call is currently in progress
bool wait_in_progress_;
// The interrupter is used to break a blocking epoll_wait call.
select_interrupter interrupter_;
// The queue of read operations.
reactor_op_queue<socket_type> read_op_queue_;
// The queue of write operations.
reactor_op_queue<socket_type> write_op_queue_;
// The queue of except operations.
reactor_op_queue<socket_type> except_op_queue_;
// The queue of timers.
reactor_timer_queue<boost::posix_time::ptime> timer_queue_;
// The type for a map of descriptors to be cancelled.
typedef hash_map<socket_type, bool> pending_cancellations_map;
// The map of descriptors that are pending cancellation.
pending_cancellations_map pending_cancellations_;
// Does the reactor loop thread need to stop.
bool stop_thread_;
// The thread that is running the reactor loop.
boost::asio::detail::thread* thread_;
};
} // namespace detail
} // namespace asio
} // namespace boost
#endif // defined(__MACH__) && defined(__APPLE__)
#include <boost/asio/detail/pop_options.hpp>
#endif // BOOST_ASIO_DETAIL_KQUEUE_REACTOR_HPP