Files
libremetaverse/libsecondlife/Types.cs
John Hurliman 81472d88f4 * Incoming packets are put on a queue instead of processing immediately
* Two new classes added, a ManagedThreadPool that is a performance enhanced ThreadPool, and BlockingQueue which is a thread-safe queue that allows one end to block until something is added to the queue
* Added Simulator.ReceivedResends for tracking the number of resent packets received
* Added StatsCommand to TestClient to print out basic networking stats

git-svn-id: http://libopenmetaverse.googlecode.com/svn/trunk@1101 52acb1d6-8a22-11de-b505-999d5b087335
2007-04-03 05:47:09 +00:00

1104 lines
35 KiB
C#

/*
* Copyright (c) 2006, Second Life Reverse Engineering Team
* All rights reserved.
*
* - Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* - Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
* - Neither the name of the Second Life Reverse Engineering Team nor the names
* of its contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
using System;
using System.ComponentModel;
using System.Net;
using System.Xml.Serialization;
namespace libsecondlife
{
/// <summary>
/// A 128-bit Universally Unique Identifier, used throughout the Second
/// Life networking protocol
/// </summary>
[Serializable]
public struct LLUUID
{
/// <summary>The System.Guid object this struct wraps around</summary>
public Guid UUID;
/// <summary>Get a byte array of the 16 raw bytes making up the UUID</summary>
public byte[] Data { get { return GetBytes(); } }
/// <summary>
/// Constructor that takes a string UUID representation
/// </summary>
/// <param name="val">A string representation of a UUID, case
/// insensitive and can either be hyphenated or non-hyphenated</param>
/// <example>LLUUID("11f8aa9c-b071-4242-836b-13b7abe0d489")</example>
public LLUUID(string val)
{
if (val == null)
UUID = new Guid();
else
UUID = new Guid(val);
}
/// <summary>
/// Constructor that takes a System.Guid object
/// </summary>
/// <param name="val">A Guid object that contains the unique identifier
/// to be represented by this LLUUID</param>
public LLUUID(Guid val)
{
UUID = val;
}
/// <summary>
/// Constructor that takes a byte array containing a UUID
/// </summary>
/// <param name="source">Byte array containing a 16 byte UUID</param>
/// <param name="pos">Beginning offset in the array</param>
public LLUUID(byte[] source, int pos)
{
UUID = new Guid(
(source[pos + 0] << 24) | (source[pos + 1] << 16) | (source[pos + 2] << 8) | source[pos + 3],
(short)((source[pos + 4] << 8) | source[pos + 5]),
(short)((source[pos + 6] << 8) | source[pos + 7]),
source[pos + 8], source[pos + 9], source[pos + 10], source[pos + 11],
source[pos + 12], source[pos + 13], source[pos + 14], source[pos + 15]);
}
/// <summary>
/// Constructor that takes an unsigned 64-bit unsigned integer to
/// convert to a UUID
/// </summary>
/// <param name="val">64-bit unsigned integer to convert to a UUID</param>
public LLUUID(ulong val)
{
UUID = new Guid(0, 0, 0, BitConverter.GetBytes(val));
}
/// <summary>
/// Returns the raw bytes for this UUID
/// </summary>
/// <returns>A 16 byte array containing this UUID</returns>
public byte[] GetBytes()
{
byte[] bytes = UUID.ToByteArray();
if (BitConverter.IsLittleEndian)
{
byte[] output = new byte[16];
output[0] = bytes[3];
output[1] = bytes[2];
output[2] = bytes[1];
output[3] = bytes[0];
output[4] = bytes[5];
output[5] = bytes[4];
output[6] = bytes[7];
output[7] = bytes[6];
Array.Copy(bytes, 8, output, 8, 8);
return output;
}
else
{
return bytes;
}
}
/// <summary>
/// Calculate an LLCRC (cyclic redundancy check) for this LLUUID
/// </summary>
/// <returns>The CRC checksum for this LLUUID</returns>
public uint CRC()
{
uint retval = 0;
byte[] bytes = GetBytes();
retval += (uint)((bytes[ 3] << 24) + (bytes[ 2] << 16) + (bytes[ 1] << 8) + bytes[ 0]);
retval += (uint)((bytes[ 7] << 24) + (bytes[ 6] << 16) + (bytes[ 5] << 8) + bytes[ 4]);
retval += (uint)((bytes[11] << 24) + (bytes[10] << 16) + (bytes[ 9] << 8) + bytes[ 8]);
retval += (uint)((bytes[15] << 24) + (bytes[14] << 16) + (bytes[13] << 8) + bytes[12]);
return retval;
}
/// <summary>
/// Combine two UUIDs together by taking the MD5 hash of a byte array
/// containing both UUIDs
/// </summary>
/// <param name="other">The UUID to combine with this one</param>
/// <returns>The UUID product of the combination</returns>
public LLUUID Combine(LLUUID other)
{
// Build the buffer to MD5
byte[] input = new byte[32];
Array.Copy(GetBytes(), input, 16);
Array.Copy(other.GetBytes(), 0, input, 16, 16);
return new LLUUID(Helpers.MD5Builder.ComputeHash(input), 0);
}
/// <summary>
/// Generate a LLUUID from a string
/// </summary>
/// <param name="val">A string representation of a UUID, case
/// insensitive and can either be hyphenated or non-hyphenated</param>
/// <example>LLUUID.Parse("11f8aa9c-b071-4242-836b-13b7abe0d489")</example>
public static LLUUID Parse(string val)
{
return new LLUUID(val);
}
/// <summary>
/// Generate a LLUUID from a string
/// </summary>
/// <param name="val">A string representation of a UUID, case
/// insensitive and can either be hyphenated or non-hyphenated</param>
/// <param name="result">Will contain the parsed UUID if successful,
/// otherwise null</param>
/// <returns>True if the string was successfully parse, otherwise false</returns>
/// <example>LLUUID.TryParse("11f8aa9c-b071-4242-836b-13b7abe0d489", result)</example>
public static bool TryParse(string val, out LLUUID result)
{
try
{
result = Parse(val);
return true;
}
catch (Exception)
{
result = LLUUID.Zero;
return false;
}
}
/// <summary>
///
/// </summary>
/// <returns></returns>
public static LLUUID Random()
{
return new LLUUID(Guid.NewGuid());
}
/// <summary>
/// Return a hash code for this UUID, used by .NET for hash tables
/// </summary>
/// <returns>An integer composed of all the UUID bytes XORed together</returns>
public override int GetHashCode()
{
return UUID.GetHashCode();
}
/// <summary>
/// Comparison function
/// </summary>
/// <param name="o">An object to compare to this UUID</param>
/// <returns>False if the object is not an LLUUID, true if it is and
/// byte for byte identical to this</returns>
public override bool Equals(object o)
{
if (!(o is LLUUID)) return false;
LLUUID uuid = (LLUUID)o;
return UUID == uuid.UUID;
}
/// <summary>
/// Equals operator
/// </summary>
/// <param name="lhs">First LLUUID for comparison</param>
/// <param name="rhs">Second LLUUID for comparison</param>
/// <returns>True if the UUIDs are byte for byte equal, otherwise false</returns>
public static bool operator==(LLUUID lhs, LLUUID rhs)
{
return lhs.UUID == rhs.UUID;
}
/// <summary>
/// Not equals operator
/// </summary>
/// <param name="lhs">First LLUUID for comparison</param>
/// <param name="rhs">Second LLUUID for comparison</param>
/// <returns>True if the UUIDs are not equal, otherwise true</returns>
public static bool operator!=(LLUUID lhs, LLUUID rhs)
{
return !(lhs == rhs);
}
/// <summary>
/// XOR operator
/// </summary>
/// <param name="lhs">First LLUUID</param>
/// <param name="rhs">Second LLUUID</param>
/// <returns>A UUID that is a XOR combination of the two input UUIDs</returns>
public static LLUUID operator ^(LLUUID lhs, LLUUID rhs)
{
byte[] lhsbytes = lhs.GetBytes();
byte[] rhsbytes = rhs.GetBytes();
byte[] output = new byte[16];
for (int i = 0; i < 16; i++)
{
output[i] = (byte)(lhsbytes[i] ^ rhsbytes[i]);
}
return new LLUUID(output, 0);
}
/// <summary>
/// String typecasting operator
/// </summary>
/// <param name="val">A UUID in string form. Case insensitive,
/// hyphenated or non-hyphenated</param>
/// <returns>A UUID built from the string representation</returns>
public static implicit operator LLUUID(string val)
{
return new LLUUID(val);
}
/// <summary>
/// Get a string representation of this UUID
/// </summary>
/// <returns>A string representation of this UUID, lowercase and
/// without hyphens</returns>
/// <example>11f8aa9cb0714242836b13b7abe0d489</example>
public override string ToString()
{
string uuid = UUID.ToString();
return uuid.Replace("-", String.Empty);
}
/// <summary>
/// Get a hyphenated string representation of this UUID
/// </summary>
/// <returns>A string representation of this UUID, lowercase and
/// with hyphens</returns>
/// <example>11f8aa9c-b071-4242-836b-13b7abe0d489</example>
public string ToStringHyphenated()
{
return UUID.ToString();
}
/// <summary>
/// An LLUUID with a value of all zeroes
/// </summary>
public static readonly LLUUID Zero = new LLUUID();
}
/// <summary>
/// A three-dimensional vector with floating-point values
/// </summary>
[Serializable]
public struct LLVector3
{
/// <summary>X value</summary>
[XmlAttribute("x"), DefaultValue(0)] public float X;
/// <summary>Y value</summary>
[XmlAttribute("y"), DefaultValue(0)] public float Y;
/// <summary>Z value</summary>
[XmlAttribute("z"), DefaultValue(0)] public float Z;
/// <summary>
/// Constructor, builds a single-precision vector from a
/// double-precision one
/// </summary>
/// <param name="vector">A double-precision vector</param>
public LLVector3(LLVector3d vector)
{
X = (float)vector.X;
Y = (float)vector.Y;
Z = (float)vector.Z;
}
/// <summary>
/// Constructor, builds a vector from a byte array
/// </summary>
/// <param name="byteArray">Byte array containing a 12 byte vector</param>
/// <param name="pos">Beginning position in the byte array</param>
public LLVector3(byte[] byteArray, int pos)
{
if (!BitConverter.IsLittleEndian)
{
byte[] newArray = new byte[12];
Array.Copy(byteArray, pos, newArray, 0, 12);
Array.Reverse(newArray, 0, 4);
Array.Reverse(newArray, 4, 4);
Array.Reverse(newArray, 8, 4);
X = BitConverter.ToSingle(newArray, 0);
Y = BitConverter.ToSingle(newArray, 4);
Z = BitConverter.ToSingle(newArray, 8);
}
else
{
X = BitConverter.ToSingle(byteArray, pos);
Y = BitConverter.ToSingle(byteArray, pos + 4);
Z = BitConverter.ToSingle(byteArray, pos + 8);
}
}
/// <summary>
/// Constructor, builds a vector for individual float values
/// </summary>
/// <param name="x">X value</param>
/// <param name="y">Y value</param>
/// <param name="z">Z value</param>
public LLVector3(float x, float y, float z)
{
X = x;
Y = y;
Z = z;
}
/// <summary>
/// Returns the raw bytes for this vector
/// </summary>
/// <returns>A 12 byte array containing X, Y, and Z</returns>
public byte[] GetBytes()
{
byte[] byteArray = new byte[12];
Array.Copy(BitConverter.GetBytes(X), 0, byteArray, 0, 4);
Array.Copy(BitConverter.GetBytes(Y), 0, byteArray, 4, 4);
Array.Copy(BitConverter.GetBytes(Z), 0, byteArray, 8, 4);
if(!BitConverter.IsLittleEndian) {
Array.Reverse(byteArray, 0, 4);
Array.Reverse(byteArray, 4, 4);
Array.Reverse(byteArray, 8, 4);
}
return byteArray;
}
/// <summary>
/// Get the distance to point
/// </summary>
/// <param name="Pt"></param>
/// <returns></returns>
public double GetDistanceTo(LLVector3 Pt)
{
return Math.Sqrt(((X - Pt.X) * (X - Pt.X)) + ((Y - Pt.Y) * (Y - Pt.Y)) + ((Z - Pt.Z) * (Z - Pt.Z)));
}
/// <summary>
/// Get a formatted string representation of the vector
/// </summary>
/// <returns>A string representation of the vector, similar to the LSL
/// vector to string conversion in Second Life</returns>
public override string ToString()
{
return String.Format("<{0}, {1}, {2}>", X, Y, Z);
}
/// <summary>
/// A hash of the vector, used by .NET for hash tables
/// </summary>
/// <returns>The hashes of the individual components XORed together</returns>
public override int GetHashCode()
{
return (X.GetHashCode() ^ Y.GetHashCode() ^ Z.GetHashCode());
}
/// <summary>
/// Generate an LLVector3 from a string
/// </summary>
/// <param name="val">A string representation of a 3D vector, enclosed
/// in arrow brackets and separated by commas</param>
public static LLVector3 Parse(string val)
{
char[] splitChar = { ',', ' ' };
string[] split = val.Replace("<","").Replace(">","").Split(splitChar, StringSplitOptions.RemoveEmptyEntries);
return new LLVector3(float.Parse(split[0].Trim()), float.Parse(split[1].Trim()), float.Parse(split[2].Trim()));
}
public static bool TryParse(string val, out LLVector3 result)
{
try
{
result = Parse(val);
return true;
}
catch (Exception)
{
result = new LLVector3();
return false;
}
}
/// <summary>
///
/// </summary>
/// <param name="o"></param>
/// <returns></returns>
public override bool Equals(object o)
{
if (!(o is LLVector3)) return false;
LLVector3 vector = (LLVector3)o;
return (X == vector.X && Y == vector.Y && Z == vector.Z);
}
/// <summary>
///
/// </summary>
/// <param name="lhs"></param>
/// <param name="rhs"></param>
/// <returns></returns>
public static bool operator==(LLVector3 lhs, LLVector3 rhs)
{
// If both are null, or both are same instance, return true
if (System.Object.ReferenceEquals(lhs, rhs))
{
return true;
}
// If one is null, but not both, return false.
if (((object)lhs == null) || ((object)rhs == null))
{
return false;
}
return (lhs.X == rhs.X && lhs.Y == rhs.Y && lhs.Z == rhs.Z);
}
/// <summary>
///
/// </summary>
/// <param name="lhs"></param>
/// <param name="rhs"></param>
/// <returns></returns>
public static bool operator!=(LLVector3 lhs, LLVector3 rhs)
{
return !(lhs == rhs);
}
public static LLVector3 operator +(LLVector3 lhs, LLVector3 rhs)
{
return new LLVector3(lhs.X + rhs.X, lhs.Y + rhs.Y, lhs.Z + rhs.Z);
}
/// <summary>
///
/// </summary>
/// <param name="lhs"></param>
/// <param name="rhs"></param>
/// <returns></returns>
public static LLVector3 operator -(LLVector3 lhs, LLVector3 rhs)
{
return new LLVector3(lhs.X - rhs.X,lhs.Y - rhs.Y, lhs.Z - rhs.Z);
}
public static LLVector3 operator *(LLVector3 vec, LLQuaternion quat)
{
LLQuaternion vq = new LLQuaternion(vec.X, vec.Y, vec.Z, 0);
LLQuaternion nq = new LLQuaternion(-quat.X, -quat.Y, -quat.Z, quat.W);
LLQuaternion result = (quat * vq) * nq;
return new LLVector3(result.X, result.Y, result.Z);
}
/// <summary>
/// An LLVector3 with a value of 0,0,0
/// </summary>
public readonly static LLVector3 Zero = new LLVector3();
}
/// <summary>
/// A double-precision three-dimensional vector
/// </summary>
[Serializable]
public struct LLVector3d
{
/// <summary>X value</summary>
[XmlAttribute("x"), DefaultValue(0)] public double X;
/// <summary>Y value</summary>
[XmlAttribute("y"), DefaultValue(0)] public double Y;
/// <summary>Z value</summary>
[XmlAttribute("z"), DefaultValue(0)] public double Z;
/// <summary>
///
/// </summary>
/// <param name="x"></param>
/// <param name="y"></param>
/// <param name="z"></param>
public LLVector3d(double x, double y, double z)
{
X = x;
Y = y;
Z = z;
}
/// <summary>
/// Create a double precision vector from a float vector
/// </summary>
/// <param name="llv3"></param>
public LLVector3d(LLVector3 llv3)
{
X = llv3.X;
Y = llv3.Y;
Z = llv3.Z;
}
/// <summary>
///
/// </summary>
/// <param name="byteArray"></param>
/// <param name="pos"></param>
public LLVector3d(byte[] byteArray, int pos)
{
if (!BitConverter.IsLittleEndian)
{
byte[] newArray = new byte[24];
Array.Copy(byteArray, pos, newArray, 0, 24);
Array.Reverse(newArray, 0, 8);
Array.Reverse(newArray, 8, 8);
Array.Reverse(newArray, 16, 8);
X = BitConverter.ToDouble(newArray, 0);
Y = BitConverter.ToDouble(newArray, 8);
Z = BitConverter.ToDouble(newArray, 16);
}
else
{
X = BitConverter.ToDouble(byteArray, pos);
Y = BitConverter.ToDouble(byteArray, pos + 8);
Z = BitConverter.ToDouble(byteArray, pos + 16);
}
}
/// <summary>
/// A hash of the vector, used by .NET for hash tables
/// </summary>
/// <returns>The hashes of the individual components XORed together</returns>
public override int GetHashCode()
{
return (X.GetHashCode() ^ Y.GetHashCode() ^ Z.GetHashCode());
}
/// <summary>
///
/// </summary>
/// <param name="o"></param>
/// <returns></returns>
public override bool Equals(object o)
{
if (!(o is LLVector3d)) return false;
LLVector3d vector = (LLVector3d)o;
return (X == vector.X && Y == vector.Y && Z == vector.Z);
}
/// <summary>
///
/// </summary>
/// <param name="lhs"></param>
/// <param name="rhs"></param>
/// <returns></returns>
public static bool operator ==(LLVector3d lhs, LLVector3d rhs)
{
// If both are null, or both are same instance, return true
if (System.Object.ReferenceEquals(lhs, rhs))
{
return true;
}
// If one is null, but not both, return false.
if (((object)lhs == null) || ((object)rhs == null))
{
return false;
}
return (lhs.X == rhs.X && lhs.Y == rhs.Y && lhs.Z == rhs.Z);
}
/// <summary>
///
/// </summary>
/// <param name="lhs"></param>
/// <param name="rhs"></param>
/// <returns></returns>
public static bool operator !=(LLVector3d lhs, LLVector3d rhs)
{
return !(lhs == rhs);
}
/// <summary>
/// Get the distance to point
/// </summary>
/// <param name="Pt"></param>
/// <returns></returns>
public double GetDistanceTo(LLVector3d Pt)
{
return Math.Sqrt(((X - Pt.X) * (X - Pt.X)) + ((Y - Pt.Y) * (Y - Pt.Y)) + ((Z - Pt.Z) * (Z - Pt.Z)));
}
/// <summary>
///
/// </summary>
/// <returns></returns>
public byte[] GetBytes()
{
byte[] byteArray = new byte[24];
Array.Copy(BitConverter.GetBytes(X), 0, byteArray, 0, 8);
Array.Copy(BitConverter.GetBytes(Y), 0, byteArray, 8, 8);
Array.Copy(BitConverter.GetBytes(Z), 0, byteArray, 16, 8);
if(!BitConverter.IsLittleEndian)
{
Array.Reverse(byteArray, 0, 8);
Array.Reverse(byteArray, 8, 8);
Array.Reverse(byteArray, 16, 8);
}
return byteArray;
}
/// <summary>
///
/// </summary>
/// <returns></returns>
public override string ToString()
{
return String.Format("<{0}, {1}, {2}>", X, Y, Z);
}
/// <summary>
/// An LLVector3d with a value of 0,0,0
/// </summary>
public static readonly LLVector3d Zero = new LLVector3d();
}
/// <summary>
/// A four-dimensional vector
/// </summary>
[Serializable]
public struct LLVector4
{
/// <summary></summary>
[XmlAttribute("x"), DefaultValue(0)] public float X;
/// <summary></summary>
[XmlAttribute("y"), DefaultValue(0)] public float Y;
/// <summary></summary>
[XmlAttribute("z"), DefaultValue(0)] public float Z;
/// <summary></summary>
[XmlAttribute("s"), DefaultValue(0)] public float S;
/// <summary>
///
/// </summary>
/// <param name="byteArray"></param>
/// <param name="pos"></param>
public LLVector4(byte[] byteArray, int pos)
{
if (!BitConverter.IsLittleEndian)
{
byte[] newArray = new byte[16];
Array.Copy(byteArray, pos, newArray, 0, 16);
Array.Reverse(newArray, 0, 4);
Array.Reverse(newArray, 4, 4);
Array.Reverse(newArray, 8, 4);
Array.Reverse(newArray, 12, 4);
X = BitConverter.ToSingle(newArray, 0);
Y = BitConverter.ToSingle(newArray, 4);
Z = BitConverter.ToSingle(newArray, 8);
S = BitConverter.ToSingle(newArray, 12);
}
else
{
X = BitConverter.ToSingle(byteArray, pos);
Y = BitConverter.ToSingle(byteArray, pos + 4);
Z = BitConverter.ToSingle(byteArray, pos + 8);
S = BitConverter.ToSingle(byteArray, pos + 12);
}
}
/// <summary>
///
/// </summary>
/// <returns></returns>
public byte[] GetBytes()
{
byte[] byteArray = new byte[16];
Array.Copy(BitConverter.GetBytes(X), 0, byteArray, 0, 4);
Array.Copy(BitConverter.GetBytes(Y), 0, byteArray, 4, 4);
Array.Copy(BitConverter.GetBytes(Z), 0, byteArray, 8, 4);
Array.Copy(BitConverter.GetBytes(S), 0, byteArray, 12, 4);
if(!BitConverter.IsLittleEndian) {
Array.Reverse(byteArray, 0, 4);
Array.Reverse(byteArray, 4, 4);
Array.Reverse(byteArray, 8, 4);
Array.Reverse(byteArray, 12, 4);
}
return byteArray;
}
/// <summary>
///
/// </summary>
/// <returns></returns>
public override string ToString()
{
return String.Format("<{0}, {1}, {2}, {3}>", X, Y, Z, S);
}
/// <summary>
/// An LLVector4 with a value of 0,0,0,0
/// </summary>
public readonly static LLVector4 Zero = new LLVector4();
}
/// <summary>
/// An 8-bit color structure including an alpha channel
/// </summary>
[Serializable]
public struct LLColor
{
/// <summary>Red</summary>
[XmlAttribute("r"), DefaultValue(0)]
public float R;
/// <summary>Green</summary>
[XmlAttribute("g"), DefaultValue(0)]
public float G;
/// <summary>Blue</summary>
[XmlAttribute("b"), DefaultValue(0)]
public float B;
/// <summary>Alpha</summary>
[XmlAttribute("a"), DefaultValue(0)]
public float A;
/// <summary>
///
/// </summary>
/// <param name="r"></param>
/// <param name="g"></param>
/// <param name="b"></param>
/// <param name="a"></param>
public LLColor(byte r, byte g, byte b, byte a)
{
float quanta = 1.0f / 255.0f;
R = (float)r * quanta;
G = (float)g * quanta;
B = (float)b * quanta;
A = (float)a * quanta;
}
/// <summary>
///
/// </summary>
/// <param name="byteArray"></param>
/// <param name="pos"></param>
public LLColor(byte[] byteArray, int pos)
{
float quanta = 1.0f / 255.0f;
R = (float)byteArray[pos] * quanta;
G = (float)byteArray[pos + 1] * quanta;
B = (float)byteArray[pos + 2] * quanta;
A = (float)byteArray[pos + 3] * quanta;
}
/// <summary>
///
/// </summary>
/// <returns></returns>
public byte[] GetBytes()
{
byte[] byteArray = new byte[4];
byteArray[0] = Helpers.FloatToByte(R, 0.0f, 255.0f);
byteArray[1] = Helpers.FloatToByte(G, 0.0f, 255.0f);
byteArray[2] = Helpers.FloatToByte(B, 0.0f, 255.0f);
byteArray[3] = Helpers.FloatToByte(A, 0.0f, 255.0f);
return byteArray;
}
/// <summary>
///
/// </summary>
/// <returns></returns>
public override string ToString()
{
return String.Format("<{0}, {1}, {2}, {3}>", R, G, B, A);
}
/// <summary>
///
/// </summary>
/// <returns></returns>
public string ToStringRGB()
{
return String.Format("<{0}, {1}, {2}>", R, G, B);
}
/// <summary>
/// An LLColor with a value of 0,0,0,255
/// </summary>
public readonly static LLColor Black = new LLColor(0, 0, 0, 255);
}
/// <summary>
/// A quaternion, used for rotations
/// </summary>
[Serializable]
public struct LLQuaternion
{
/// <summary>X value</summary>
[XmlAttribute("x"), DefaultValue(0)] public float X;
/// <summary>Y value</summary>
[XmlAttribute("y"), DefaultValue(0)] public float Y;
/// <summary>Z value</summary>
[XmlAttribute("z"), DefaultValue(0)] public float Z;
/// <summary>W value</summary>
[XmlAttribute("w"), DefaultValue(0)] public float W;
/// <summary>
/// Build a quaternion object from a byte array
/// </summary>
/// <param name="byteArray">The source byte array</param>
/// <param name="pos">Offset in the byte array to start reading at</param>
/// <param name="normalized">Whether the source data is normalized or
/// not. If this is true 12 bytes will be read, otherwise 16 bytes will
/// be read.</param>
public LLQuaternion(byte[] byteArray, int pos, bool normalized)
{
if (!normalized)
{
if (!BitConverter.IsLittleEndian)
{
byte[] newArray = new byte[16];
Array.Copy(byteArray, pos, newArray, 0, 16);
Array.Reverse(newArray, 0, 4);
Array.Reverse(newArray, 4, 4);
Array.Reverse(newArray, 8, 4);
Array.Reverse(newArray, 12, 4);
X = BitConverter.ToSingle(newArray, 0);
Y = BitConverter.ToSingle(newArray, 4);
Z = BitConverter.ToSingle(newArray, 8);
W = BitConverter.ToSingle(newArray, 12);
}
else
{
X = BitConverter.ToSingle(byteArray, pos);
Y = BitConverter.ToSingle(byteArray, pos + 4);
Z = BitConverter.ToSingle(byteArray, pos + 8);
W = BitConverter.ToSingle(byteArray, pos + 12);
}
}
else
{
if (!BitConverter.IsLittleEndian)
{
byte[] newArray = new byte[12];
Array.Copy(byteArray, pos, newArray, 0, 12);
Array.Reverse(newArray, 0, 4);
Array.Reverse(newArray, 4, 4);
Array.Reverse(newArray, 8, 4);
X = BitConverter.ToSingle(newArray, 0);
Y = BitConverter.ToSingle(newArray, 4);
Z = BitConverter.ToSingle(newArray, 8);
}
else
{
X = BitConverter.ToSingle(byteArray, pos);
Y = BitConverter.ToSingle(byteArray, pos + 4);
Z = BitConverter.ToSingle(byteArray, pos + 8);
}
float xyzsum = 1 - X * X - Y * Y - Z * Z;
W = (xyzsum > 0) ? (float)Math.Sqrt(xyzsum) : 0;
}
}
/// <summary>
/// Build a quaternion from normalized float values
/// </summary>
/// <param name="x">X value from -1.0 to 1.0</param>
/// <param name="y">Y value from -1.0 to 1.0</param>
/// <param name="z">Z value from -1.0 to 1.0</param>
public LLQuaternion(float x, float y, float z)
{
X = x;
Y = y;
Z = z;
float xyzsum = 1 - X * X - Y * Y - Z * Z;
W = (xyzsum > 0) ? (float)Math.Sqrt(xyzsum) : 0;
}
/// <summary>
/// Build a quaternion from individual float values
/// </summary>
/// <param name="x">X value</param>
/// <param name="y">Y value</param>
/// <param name="z">Z value</param>
/// <param name="w">W value</param>
public LLQuaternion(float x, float y, float z, float w)
{
X = x;
Y = y;
Z = z;
W = w;
}
/// <summary>
/// Normalize this quaternion and serialize it to a byte array
/// </summary>
/// <returns>A 12 byte array containing normalized X, Y, and Z floating
/// point values in order using little endian byte ordering</returns>
public byte[] GetBytes()
{
byte[] bytes = new byte[12];
float norm;
norm = (float)Math.Sqrt(X*X + Y*Y + Z*Z + W*W);
if (norm != 0)
{
norm = 1 / norm;
Array.Copy(BitConverter.GetBytes(norm * X), 0, bytes, 0, 4);
Array.Copy(BitConverter.GetBytes(norm * Y), 0, bytes, 4, 4);
Array.Copy(BitConverter.GetBytes(norm * Z), 0, bytes, 8, 4);
if (!BitConverter.IsLittleEndian)
{
Array.Reverse(bytes, 0, 4);
Array.Reverse(bytes, 4, 4);
Array.Reverse(bytes, 8, 4);
}
}
else
{
throw new Exception("Quaternion " + this.ToString() + " normalized to zero");
}
return bytes;
}
/// <summary>
///
/// </summary>
/// <returns></returns>
public override int GetHashCode()
{
return (X.GetHashCode() ^ Y.GetHashCode() ^ Z.GetHashCode() ^ W.GetHashCode());
}
/// <summary>
///
/// </summary>
/// <param name="o"></param>
/// <returns></returns>
public override bool Equals(object o)
{
if (!(o is LLQuaternion)) return false;
LLQuaternion quaternion = (LLQuaternion)o;
return X == quaternion.X && Y == quaternion.Y && Z == quaternion.Z && W == quaternion.W;
}
/// <summary>
/// Comparison operator
/// </summary>
/// <param name="lhs"></param>
/// <param name="rhs"></param>
/// <returns></returns>
public static bool operator ==(LLQuaternion lhs, LLQuaternion rhs)
{
// If both are null, or both are same instance, return true
if (System.Object.ReferenceEquals(lhs, rhs))
{
return true;
}
// If one is null, but not both, return false.
if (((object)lhs == null) || ((object)rhs == null))
{
return false;
}
// Return true if the fields match:
return lhs.X == rhs.X && lhs.Y == rhs.Y && lhs.Z == rhs.Z && lhs.W == rhs.W;
}
/// <summary>
/// Not comparison operator
/// </summary>
/// <param name="lhs"></param>
/// <param name="rhs"></param>
/// <returns></returns>
public static bool operator !=(LLQuaternion lhs, LLQuaternion rhs)
{
return !(lhs == rhs);
}
/// <summary>
/// Multiplication operator
/// </summary>
/// <param name="lhs"></param>
/// <param name="rhs"></param>
/// <returns></returns>
public static LLQuaternion operator *(LLQuaternion lhs, LLQuaternion rhs)
{
LLQuaternion ret = new LLQuaternion();
ret.W = lhs.W * rhs.W - lhs.X * rhs.X - lhs.Y * rhs.Y - lhs.Z * rhs.Z;
ret.X = lhs.W * rhs.X + lhs.X * rhs.W + lhs.Y * rhs.Z - lhs.Z * rhs.Y;
ret.Y = lhs.W * rhs.Y + lhs.Y * rhs.W + lhs.Z * rhs.X - lhs.X * rhs.Z;
ret.Z = lhs.W * rhs.Z + lhs.Z * rhs.W + lhs.X * rhs.Y - lhs.Y * rhs.X;
return ret;
}
/// <summary>
///
/// </summary>
/// <returns></returns>
public override string ToString()
{
return "<" + X.ToString() + ", " + Y.ToString() + ", " + Z.ToString() + ", " + W.ToString() + ">";
}
/// <summary>
/// An LLQuaternion with a value of 0,0,0,1
/// </summary>
public readonly static LLQuaternion Identity = new LLQuaternion(0, 0, 0, 1);
}
}