Files
libremetaverse/libsecondlife/Types.cs

2404 lines
74 KiB
C#

/*
* Copyright (c) 2006-2007, Second Life Reverse Engineering Team
* All rights reserved.
*
* - Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* - Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
* - Neither the name of the Second Life Reverse Engineering Team nor the names
* of its contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
using System;
using System.Collections.Generic;
using libsecondlife.StructuredData;
namespace libsecondlife
{
/// <summary>
/// A 128-bit Universally Unique Identifier, used throughout the Second
/// Life networking protocol
/// </summary>
public struct LLUUID : IComparable
{
/// <summary>The System.Guid object this struct wraps around</summary>
public Guid UUID;
#region Properties
/// <summary>Get a byte array of the 16 raw bytes making up the UUID</summary>
public byte[] Data { get { return GetBytes(); } }
#endregion Properties
#region Constructors
/// <summary>
/// Constructor that takes a string UUID representation
/// </summary>
/// <param name="val">A string representation of a UUID, case
/// insensitive and can either be hyphenated or non-hyphenated</param>
/// <example>LLUUID("11f8aa9c-b071-4242-836b-13b7abe0d489")</example>
public LLUUID(string val)
{
if (val == null)
UUID = new Guid();
else
UUID = new Guid(val);
}
/// <summary>
/// Constructor that takes a System.Guid object
/// </summary>
/// <param name="val">A Guid object that contains the unique identifier
/// to be represented by this LLUUID</param>
public LLUUID(Guid val)
{
UUID = val;
}
/// <summary>
/// Constructor that takes a byte array containing a UUID
/// </summary>
/// <param name="source">Byte array containing a 16 byte UUID</param>
/// <param name="pos">Beginning offset in the array</param>
public LLUUID(byte[] source, int pos)
{
UUID = LLUUID.Zero.UUID;
FromBytes(source, pos);
}
/// <summary>
/// Constructor that takes an unsigned 64-bit unsigned integer to
/// convert to a UUID
/// </summary>
/// <param name="val">64-bit unsigned integer to convert to a UUID</param>
public LLUUID(ulong val)
{
UUID = new Guid(0, 0, 0, BitConverter.GetBytes(val));
}
#endregion Constructors
#region Public Methods
/// <summary>
///
/// </summary>
/// <param name="source"></param>
/// <param name="pos"></param>
public void FromBytes(byte[] source, int pos)
{
UUID = new Guid(
(source[pos + 0] << 24) | (source[pos + 1] << 16) | (source[pos + 2] << 8) | source[pos + 3],
(short)((source[pos + 4] << 8) | source[pos + 5]),
(short)((source[pos + 6] << 8) | source[pos + 7]),
source[pos + 8], source[pos + 9], source[pos + 10], source[pos + 11],
source[pos + 12], source[pos + 13], source[pos + 14], source[pos + 15]);
}
/// <summary>
/// IComparable.CompareTo implementation.
/// </summary>
public int CompareTo(object obj)
{
if (obj is LLUUID)
{
LLUUID ID = (LLUUID)obj;
return this.UUID.CompareTo(ID.UUID);
}
throw new ArgumentException("object is not a LLUUID");
}
/// <summary>
/// Returns the raw bytes for this UUID
/// </summary>
/// <returns>A 16 byte array containing this UUID</returns>
public byte[] GetBytes()
{
byte[] bytes = UUID.ToByteArray();
if (BitConverter.IsLittleEndian)
{
byte[] output = new byte[16];
output[0] = bytes[3];
output[1] = bytes[2];
output[2] = bytes[1];
output[3] = bytes[0];
output[4] = bytes[5];
output[5] = bytes[4];
output[6] = bytes[7];
output[7] = bytes[6];
Buffer.BlockCopy(bytes, 8, output, 8, 8);
return output;
}
else
{
return bytes;
}
}
/// <summary>
/// Calculate an LLCRC (cyclic redundancy check) for this LLUUID
/// </summary>
/// <returns>The CRC checksum for this LLUUID</returns>
public uint CRC()
{
uint retval = 0;
byte[] bytes = GetBytes();
retval += (uint)((bytes[ 3] << 24) + (bytes[ 2] << 16) + (bytes[ 1] << 8) + bytes[ 0]);
retval += (uint)((bytes[ 7] << 24) + (bytes[ 6] << 16) + (bytes[ 5] << 8) + bytes[ 4]);
retval += (uint)((bytes[11] << 24) + (bytes[10] << 16) + (bytes[ 9] << 8) + bytes[ 8]);
retval += (uint)((bytes[15] << 24) + (bytes[14] << 16) + (bytes[13] << 8) + bytes[12]);
return retval;
}
/// <summary>
/// Get a 64-bit integer representation of the first half of this UUID
/// </summary>
/// <returns>An integer created from the first eight bytes of this UUID</returns>
public ulong ToULong()
{
return Helpers.BytesToUInt64(UUID.ToByteArray());
}
#endregion Public Methods
#region Static Methods
/// <summary>
/// Generate a LLUUID from a string
/// </summary>
/// <param name="val">A string representation of a UUID, case
/// insensitive and can either be hyphenated or non-hyphenated</param>
/// <example>LLUUID.Parse("11f8aa9c-b071-4242-836b-13b7abe0d489")</example>
public static LLUUID Parse(string val)
{
return new LLUUID(val);
}
/// <summary>
/// Generate a LLUUID from a string
/// </summary>
/// <param name="val">A string representation of a UUID, case
/// insensitive and can either be hyphenated or non-hyphenated</param>
/// <param name="result">Will contain the parsed UUID if successful,
/// otherwise null</param>
/// <returns>True if the string was successfully parse, otherwise false</returns>
/// <example>LLUUID.TryParse("11f8aa9c-b071-4242-836b-13b7abe0d489", result)</example>
public static bool TryParse(string val, out LLUUID result)
{
try
{
result = Parse(val);
return true;
}
catch (Exception)
{
result = LLUUID.Zero;
return false;
}
}
/// <summary>
/// Combine two UUIDs together by taking the MD5 hash of a byte array
/// containing both UUIDs
/// </summary>
/// <param name="first">First LLUUID to combine</param>
/// <param name="second">Second LLUUID to combine</param>
/// <returns>The UUID product of the combination</returns>
public static LLUUID Combine(LLUUID first, LLUUID second)
{
// Construct the buffer that MD5ed
byte[] input = new byte[32];
Buffer.BlockCopy(first.GetBytes(), 0, input, 0, 16);
Buffer.BlockCopy(second.GetBytes(), 0, input, 16, 16);
return new LLUUID(Helpers.MD5Builder.ComputeHash(input), 0);
}
/// <summary>
///
/// </summary>
/// <returns></returns>
public static LLUUID Random()
{
return new LLUUID(Guid.NewGuid());
}
#endregion Static Methods
#region Overrides
/// <summary>
/// Return a hash code for this UUID, used by .NET for hash tables
/// </summary>
/// <returns>An integer composed of all the UUID bytes XORed together</returns>
public override int GetHashCode()
{
return UUID.GetHashCode();
}
/// <summary>
/// Comparison function
/// </summary>
/// <param name="o">An object to compare to this UUID</param>
/// <returns>False if the object is not an LLUUID, true if it is and
/// byte for byte identical to this</returns>
public override bool Equals(object o)
{
if (!(o is LLUUID)) return false;
LLUUID uuid = (LLUUID)o;
return UUID == uuid.UUID;
}
/// <summary>
/// Get a hyphenated string representation of this UUID
/// </summary>
/// <returns>A string representation of this UUID, lowercase and
/// with hyphens</returns>
/// <example>11f8aa9c-b071-4242-836b-13b7abe0d489</example>
public override string ToString()
{
return UUID.ToString();
}
#endregion Overrides
#region Operators
/// <summary>
/// Equals operator
/// </summary>
/// <param name="lhs">First LLUUID for comparison</param>
/// <param name="rhs">Second LLUUID for comparison</param>
/// <returns>True if the UUIDs are byte for byte equal, otherwise false</returns>
public static bool operator==(LLUUID lhs, LLUUID rhs)
{
return lhs.UUID == rhs.UUID;
}
/// <summary>
/// Not equals operator
/// </summary>
/// <param name="lhs">First LLUUID for comparison</param>
/// <param name="rhs">Second LLUUID for comparison</param>
/// <returns>True if the UUIDs are not equal, otherwise true</returns>
public static bool operator!=(LLUUID lhs, LLUUID rhs)
{
return !(lhs == rhs);
}
/// <summary>
/// XOR operator
/// </summary>
/// <param name="lhs">First LLUUID</param>
/// <param name="rhs">Second LLUUID</param>
/// <returns>A UUID that is a XOR combination of the two input UUIDs</returns>
public static LLUUID operator ^(LLUUID lhs, LLUUID rhs)
{
byte[] lhsbytes = lhs.GetBytes();
byte[] rhsbytes = rhs.GetBytes();
byte[] output = new byte[16];
for (int i = 0; i < 16; i++)
{
output[i] = (byte)(lhsbytes[i] ^ rhsbytes[i]);
}
return new LLUUID(output, 0);
}
/// <summary>
/// String typecasting operator
/// </summary>
/// <param name="val">A UUID in string form. Case insensitive,
/// hyphenated or non-hyphenated</param>
/// <returns>A UUID built from the string representation</returns>
public static implicit operator LLUUID(string val)
{
return new LLUUID(val);
}
#endregion Operators
/// <summary>An LLUUID with a value of all zeroes</summary>
public static readonly LLUUID Zero = new LLUUID();
}
/// <summary>
/// A two-dimensional vector with floating-point values
/// </summary>
public struct LLVector2
{
/// <summary>X value</summary>
public float X;
/// <summary>Y value</summary>
public float Y;
#region Constructors
/// <summary>
/// Constructor, copies a single-precision vector
/// </summary>
/// <param name="vector">Single-precision vector to copy</param>
public LLVector2(LLVector2 vector)
{
X = vector.X;
Y = vector.Y;
}
/// <summary>
/// Constructor, builds a vector for individual float values
/// </summary>
/// <param name="x">X value</param>
/// <param name="y">Y value</param>
/// <param name="z">Z value</param>
public LLVector2(float x, float y)
{
X = x;
Y = y;
}
#endregion Constructors
#region Overrides
/// <summary>
/// A hash of the vector, used by .NET for hash tables
/// </summary>
/// <returns>The hashes of the individual components XORed together</returns>
public override int GetHashCode()
{
return (X.GetHashCode() ^ Y.GetHashCode());
}
/// <summary>
///
/// </summary>
/// <param name="o"></param>
/// <returns></returns>
public override bool Equals(object o)
{
if (!(o is LLVector2)) return false;
LLVector2 vector = (LLVector2)o;
return (X == vector.X && Y == vector.Y);
}
/// <summary>
/// Get a formatted string representation of the vector
/// </summary>
/// <returns>A string representation of the vector, similar to the LSL
/// vector to string conversion in Second Life</returns>
public override string ToString()
{
return String.Format(Helpers.EnUsCulture, "<{0}, {1}>", X, Y);
}
#endregion Overrides
#region Operators
/// <summary>
///
/// </summary>
/// <param name="lhs"></param>
/// <param name="rhs"></param>
/// <returns></returns>
public static bool operator ==(LLVector2 lhs, LLVector2 rhs)
{
return (lhs.X == rhs.X && lhs.Y == rhs.Y);
}
/// <summary>
///
/// </summary>
/// <param name="lhs"></param>
/// <param name="rhs"></param>
/// <returns></returns>
public static bool operator !=(LLVector2 lhs, LLVector2 rhs)
{
return !(lhs == rhs);
}
public static LLVector2 operator +(LLVector2 lhs, LLVector2 rhs)
{
return new LLVector2(lhs.X + rhs.X, lhs.Y + rhs.Y);
}
/// <summary>
///
/// </summary>
/// <param name="lhs"></param>
/// <param name="rhs"></param>
/// <returns></returns>
public static LLVector2 operator -(LLVector2 lhs, LLVector2 rhs)
{
return new LLVector2(lhs.X - rhs.X, lhs.Y - rhs.Y);
}
/// <summary>
///
/// </summary>
/// <param name="vec"></param>
/// <param name="val"></param>
/// <returns></returns>
public static LLVector2 operator *(LLVector2 vec, float val)
{
return new LLVector2(vec.X * val, vec.Y * val);
}
/// <summary>
///
/// </summary>
/// <param name="val"></param>
/// <param name="vec"></param>
/// <returns></returns>
public static LLVector2 operator *(float val, LLVector2 vec)
{
return new LLVector2(vec.X * val, vec.Y * val);
}
/// <summary>
///
/// </summary>
/// <param name="lhs"></param>
/// <param name="rhs"></param>
/// <returns></returns>
public static LLVector2 operator *(LLVector2 lhs, LLVector2 rhs)
{
return new LLVector2(lhs.X * rhs.X, lhs.Y * rhs.Y);
}
#endregion Operators
/// <summary>An LLVector2 with a value of 0,0,0</summary>
public readonly static LLVector2 Zero = new LLVector2();
}
/// <summary>
/// A three-dimensional vector with floating-point values
/// </summary>
public struct LLVector3
{
/// <summary>X value</summary>
public float X;
/// <summary>Y value</summary>
public float Y;
/// <summary>Z value</summary>
public float Z;
// Used for little to big endian conversion on big endian architectures
private byte[] conversionBuffer;
#region Constructors
/// <summary>
/// Constructor, copies a single-precision vector
/// </summary>
/// <param name="vector">Single-precision vector to copy</param>
public LLVector3(LLVector3 vector)
{
conversionBuffer = null;
X = vector.X;
Y = vector.Y;
Z = vector.Z;
}
/// <summary>
/// Constructor, builds a single-precision vector from a
/// double-precision one
/// </summary>
/// <param name="vector">A double-precision vector</param>
public LLVector3(LLVector3d vector)
{
conversionBuffer = null;
X = (float)vector.X;
Y = (float)vector.Y;
Z = (float)vector.Z;
}
/// <summary>
/// Constructor, builds a vector from a byte array
/// </summary>
/// <param name="byteArray">Byte array containing a 12 byte vector</param>
/// <param name="pos">Beginning position in the byte array</param>
public LLVector3(byte[] byteArray, int pos)
{
conversionBuffer = null;
X = Y = Z = 0;
FromBytes(byteArray, pos);
}
/// <summary>
/// Constructor, builds a vector for individual float values
/// </summary>
/// <param name="x">X value</param>
/// <param name="y">Y value</param>
/// <param name="z">Z value</param>
public LLVector3(float x, float y, float z)
{
conversionBuffer = null;
X = x;
Y = y;
Z = z;
}
#endregion Constructors
#region Public Methods
/// <summary>
/// Builds a vector from a byte array
/// </summary>
/// <param name="byteArray">Byte array containing a 12 byte vector</param>
/// <param name="pos">Beginning position in the byte array</param>
public void FromBytes(byte[] byteArray, int pos)
{
if (!BitConverter.IsLittleEndian)
{
// Big endian architecture
if (conversionBuffer == null)
conversionBuffer = new byte[12];
Buffer.BlockCopy(byteArray, pos, conversionBuffer, 0, 12);
Array.Reverse(conversionBuffer, 0, 4);
Array.Reverse(conversionBuffer, 4, 4);
Array.Reverse(conversionBuffer, 8, 4);
X = BitConverter.ToSingle(conversionBuffer, 0);
Y = BitConverter.ToSingle(conversionBuffer, 4);
Z = BitConverter.ToSingle(conversionBuffer, 8);
}
else
{
// Little endian architecture
X = BitConverter.ToSingle(byteArray, pos);
Y = BitConverter.ToSingle(byteArray, pos + 4);
Z = BitConverter.ToSingle(byteArray, pos + 8);
}
}
/// <summary>
/// Test if this vector is composed of all finite numbers
/// </summary>
public bool IsFinite()
{
if (Helpers.IsFinite(X) && Helpers.IsFinite(Y) && Helpers.IsFinite(Z))
return true;
else
return false;
}
/// <summary>
/// Returns the raw bytes for this vector
/// </summary>
/// <returns>A 12 byte array containing X, Y, and Z</returns>
public byte[] GetBytes()
{
byte[] byteArray = new byte[12];
Buffer.BlockCopy(BitConverter.GetBytes(X), 0, byteArray, 0, 4);
Buffer.BlockCopy(BitConverter.GetBytes(Y), 0, byteArray, 4, 4);
Buffer.BlockCopy(BitConverter.GetBytes(Z), 0, byteArray, 8, 4);
if(!BitConverter.IsLittleEndian) {
Array.Reverse(byteArray, 0, 4);
Array.Reverse(byteArray, 4, 4);
Array.Reverse(byteArray, 8, 4);
}
return byteArray;
}
public LLSD ToLLSD()
{
LLSDArray array = new LLSDArray();
array.Add(LLSD.FromReal(X));
array.Add(LLSD.FromReal(Y));
array.Add(LLSD.FromReal(Z));
return array;
}
#endregion Public Methods
#region Static Methods
public static LLVector3 FromLLSD(LLSD llsd)
{
if (llsd.Type == LLSDType.Array)
{
LLSDArray array = (LLSDArray)llsd;
if (array.Count == 3)
{
return new LLVector3((float)array[0].AsReal(), (float)array[1].AsReal(), (float)array[2].AsReal());
}
}
return LLVector3.Zero;
}
/// <summary>
/// Calculate the magnitude of the supplied vector
/// </summary>
public static float Mag(LLVector3 v)
{
return (float)Math.Sqrt(v.X * v.X + v.Y * v.Y + v.Z * v.Z);
}
/// <summary>
/// Calculate the squared magnitude of the supplied vector
/// </summary>
/// <param name="v"></param>
/// <returns></returns>
public static float MagSquared(LLVector3 v)
{
return v.X * v.X + v.Y * v.Y + v.Z * v.Z;
}
/// <summary>
/// Returns a normalized version of the supplied vector
/// </summary>
/// <param name="vector">The vector to normalize</param>
/// <returns>A normalized version of the vector</returns>
public static LLVector3 Norm(LLVector3 vector)
{
float mag = Mag(vector);
return new LLVector3(vector.X / mag, vector.Y / mag, vector.Z / mag);
}
/// <summary>
/// Return the cross product of two vectors
/// </summary>
/// <param name="v1">First vector</param>
/// <param name="v2">Second vector</param>
/// <returns>Cross product of first and second vector</returns>
public static LLVector3 Cross(LLVector3 v1, LLVector3 v2)
{
return new LLVector3
(
v1.Y * v2.Z - v1.Z * v2.Y,
v1.Z * v2.X - v1.X * v2.Z,
v1.X * v2.Y - v1.Y * v2.X
);
}
/// <summary>
/// Returns the dot product of two vectors
/// </summary>
public static float Dot(LLVector3 v1, LLVector3 v2)
{
return (v1.X * v2.X) + (v1.Y * v2.Y) + (v1.Z * v2.Z);
}
/// <summary>
/// Calculates the distance between two vectors
/// </summary>
public static float Dist(LLVector3 pointA, LLVector3 pointB)
{
float xd = pointB.X - pointA.X;
float yd = pointB.Y - pointA.Y;
float zd = pointB.Z - pointA.Z;
return (float)Math.Sqrt(xd * xd + yd * yd + zd * zd);
}
public static LLVector3 Rot(LLVector3 vector, LLQuaternion rotation)
{
return vector * rotation;
}
public static LLVector3 Rot(LLVector3 vector, LLMatrix3 rotation)
{
return vector * rotation;
}
/// <summary>
/// Calculate the rotation between two vectors
/// </summary>
/// <param name="a">Directional vector, such as 1,0,0 for the forward face</param>
/// <param name="b">Target vector - normalize first with VecNorm</param>
public static LLQuaternion RotBetween(LLVector3 a, LLVector3 b)
{
//A and B should both be normalized
float dotProduct = Dot(a, b);
LLVector3 crossProduct = Cross(a, b);
float magProduct = Mag(a) * Mag(b);
double angle = Math.Acos(dotProduct / magProduct);
LLVector3 axis = Norm(crossProduct);
float s = (float)Math.Sin(angle / 2);
LLQuaternion quat = new LLQuaternion();
quat.X = axis.X * s;
quat.Y = axis.Y * s;
quat.Z = axis.Z * s;
quat.W = (float)Math.Cos(angle / 2);
return quat;
}
/// <summary>
/// Converts a vector style rotation to a quaternion
/// </summary>
/// <param name="a">Axis rotation, such as 0,0,90 for 90 degrees to the right</param>
/// <returns>A quaternion representing the axes of the supplied vector</returns>
public static LLQuaternion Axis2Rot(LLVector3 a)
{
if (a.X > 180) a.X -= 360; if (a.Y > 180) a.Y -= 360; if (a.Z > 180) a.Z -= 360;
if (a.X < -180) a.X += 360; if (a.Y < -180) a.Y += 360; if (a.Z < -180) a.Z += 360;
LLQuaternion rot = LLQuaternion.Identity;
rot.X = (float)(a.X * Helpers.DEG_TO_RAD);
rot.Y = (float)(a.Y * Helpers.DEG_TO_RAD);
rot.Z = (float)(a.Z * Helpers.DEG_TO_RAD);
if (a.Z > 180) rot.W = 0;
return rot;
}
/// <summary>
/// Generate an LLVector3 from a string
/// </summary>
/// <param name="val">A string representation of a 3D vector, enclosed
/// in arrow brackets and separated by commas</param>
public static LLVector3 Parse(string val)
{
char[] splitChar = { ',', ' ' };
string[] split = val.Replace("<", String.Empty).Replace(">", String.Empty).Split(splitChar);
return new LLVector3(
float.Parse(split[0].Trim(), Helpers.EnUsCulture),
float.Parse(split[1].Trim(), Helpers.EnUsCulture),
float.Parse(split[2].Trim(), Helpers.EnUsCulture));
}
public static bool TryParse(string val, out LLVector3 result)
{
try
{
result = Parse(val);
return true;
}
catch (Exception)
{
result = new LLVector3();
return false;
}
}
#endregion Static Methods
#region Overrides
/// <summary>
/// A hash of the vector, used by .NET for hash tables
/// </summary>
/// <returns>The hashes of the individual components XORed together</returns>
public override int GetHashCode()
{
return (X.GetHashCode() ^ Y.GetHashCode() ^ Z.GetHashCode());
}
/// <summary>
///
/// </summary>
/// <param name="o"></param>
/// <returns></returns>
public override bool Equals(object o)
{
if (!(o is LLVector3)) return false;
LLVector3 vector = (LLVector3)o;
return (X == vector.X && Y == vector.Y && Z == vector.Z);
}
/// <summary>
/// Get a formatted string representation of the vector
/// </summary>
/// <returns>A string representation of the vector, similar to the LSL
/// vector to string conversion in Second Life</returns>
public override string ToString()
{
return String.Format(Helpers.EnUsCulture, "<{0}, {1}, {2}>", X, Y, Z);
}
#endregion Overrides
#region Operators
public static bool operator==(LLVector3 lhs, LLVector3 rhs)
{
return (lhs.X == rhs.X && lhs.Y == rhs.Y && lhs.Z == rhs.Z);
}
public static bool operator!=(LLVector3 lhs, LLVector3 rhs)
{
return !(lhs == rhs);
}
public static LLVector3 operator +(LLVector3 lhs, LLVector3 rhs)
{
return new LLVector3(lhs.X + rhs.X, lhs.Y + rhs.Y, lhs.Z + rhs.Z);
}
public static LLVector3 operator -(LLVector3 lhs, LLVector3 rhs)
{
return new LLVector3(lhs.X - rhs.X,lhs.Y - rhs.Y, lhs.Z - rhs.Z);
}
public static LLVector3 operator *(LLVector3 vec, float val)
{
return new LLVector3(vec.X * val, vec.Y * val, vec.Z * val);
}
public static LLVector3 operator *(float val, LLVector3 vec)
{
return new LLVector3(vec.X * val, vec.Y * val, vec.Z * val);
}
public static LLVector3 operator *(LLVector3 lhs, LLVector3 rhs)
{
return new LLVector3(lhs.X * rhs.X, lhs.Y * rhs.Y, lhs.Z * rhs.Z);
}
public static LLVector3 operator *(LLVector3 vec, LLQuaternion rot)
{
float rw = -rot.X * vec.X - rot.Y * vec.Y - rot.Z * vec.Z;
float rx = rot.W * vec.X + rot.Y * vec.Z - rot.Z * vec.Y;
float ry = rot.W * vec.Y + rot.Z * vec.X - rot.X * vec.Z;
float rz = rot.W * vec.Z + rot.X * vec.Y - rot.Y * vec.X;
float nx = -rw * rot.X + rx * rot.W - ry * rot.Z + rz * rot.Y;
float ny = -rw * rot.Y + ry * rot.W - rz * rot.X + rx * rot.Z;
float nz = -rw * rot.Z + rz * rot.W - rx * rot.Y + ry * rot.X;
return new LLVector3(nx, ny, nz);
}
#endregion Operators
/// <summary>An LLVector3 with a value of 0,0,0</summary>
public readonly static LLVector3 Zero = new LLVector3();
}
/// <summary>
/// A double-precision three-dimensional vector
/// </summary>
public struct LLVector3d
{
/// <summary>X value</summary>
public double X;
/// <summary>Y value</summary>
public double Y;
/// <summary>Z value</summary>
public double Z;
// Used for little to big endian conversion on big endian architectures
private byte[] conversionBuffer;
#region Constructors
/// <summary>
///
/// </summary>
/// <param name="x"></param>
/// <param name="y"></param>
/// <param name="z"></param>
public LLVector3d(double x, double y, double z)
{
conversionBuffer = null;
X = x;
Y = y;
Z = z;
}
/// <summary>
/// Create a double precision vector from a float vector
/// </summary>
/// <param name="llv3"></param>
public LLVector3d(LLVector3 llv3)
{
conversionBuffer = null;
X = llv3.X;
Y = llv3.Y;
Z = llv3.Z;
}
/// <summary>
///
/// </summary>
/// <param name="byteArray"></param>
/// <param name="pos"></param>
public LLVector3d(byte[] byteArray, int pos)
{
conversionBuffer = null;
X = Y = Z = 0;
FromBytes(byteArray, pos);
}
#endregion Constructors
#region Public Methods
/// <summary>
///
/// </summary>
/// <param name="byteArray"></param>
/// <param name="pos"></param>
public void FromBytes(byte[] byteArray, int pos)
{
if (!BitConverter.IsLittleEndian)
{
// Big endian architecture
if (conversionBuffer == null)
conversionBuffer = new byte[24];
Buffer.BlockCopy(byteArray, pos, conversionBuffer, 0, 24);
Array.Reverse(conversionBuffer, 0, 8);
Array.Reverse(conversionBuffer, 8, 8);
Array.Reverse(conversionBuffer, 16, 8);
X = BitConverter.ToDouble(conversionBuffer, 0);
Y = BitConverter.ToDouble(conversionBuffer, 8);
Z = BitConverter.ToDouble(conversionBuffer, 16);
}
else
{
// Little endian architecture
X = BitConverter.ToDouble(byteArray, pos);
Y = BitConverter.ToDouble(byteArray, pos + 8);
Z = BitConverter.ToDouble(byteArray, pos + 16);
}
}
/// <summary>
///
/// </summary>
/// <returns></returns>
public byte[] GetBytes()
{
byte[] byteArray = new byte[24];
Buffer.BlockCopy(BitConverter.GetBytes(X), 0, byteArray, 0, 8);
Buffer.BlockCopy(BitConverter.GetBytes(Y), 0, byteArray, 8, 8);
Buffer.BlockCopy(BitConverter.GetBytes(Z), 0, byteArray, 16, 8);
if (!BitConverter.IsLittleEndian)
{
Array.Reverse(byteArray, 0, 8);
Array.Reverse(byteArray, 8, 8);
Array.Reverse(byteArray, 16, 8);
}
return byteArray;
}
public LLSD ToLLSD()
{
LLSDArray array = new LLSDArray();
array.Add(LLSD.FromReal(X));
array.Add(LLSD.FromReal(Y));
array.Add(LLSD.FromReal(Z));
return array;
}
#endregion Public Methods
#region Static Methods
public static LLVector3d FromLLSD(LLSD llsd)
{
if (llsd.Type == LLSDType.Array)
{
LLSDArray array = (LLSDArray)llsd;
if (array.Count == 3)
{
return new LLVector3d(array[0].AsReal(), array[1].AsReal(), array[2].AsReal());
}
}
return LLVector3d.Zero;
}
/// <summary>
/// Calculates the distance between two vectors
/// </summary>
public static double Dist(LLVector3d pointA, LLVector3d pointB)
{
double xd = pointB.X - pointA.X;
double yd = pointB.Y - pointA.Y;
double zd = pointB.Z - pointA.Z;
return Math.Sqrt(xd * xd + yd * yd + zd * zd);
}
#endregion Static Methods
#region Overrides
/// <summary>
/// A hash of the vector, used by .NET for hash tables
/// </summary>
/// <returns>The hashes of the individual components XORed together</returns>
public override int GetHashCode()
{
return (X.GetHashCode() ^ Y.GetHashCode() ^ Z.GetHashCode());
}
/// <summary>
///
/// </summary>
/// <param name="o"></param>
/// <returns></returns>
public override bool Equals(object o)
{
if (!(o is LLVector3d)) return false;
LLVector3d vector = (LLVector3d)o;
return (X == vector.X && Y == vector.Y && Z == vector.Z);
}
/// <summary>
///
/// </summary>
/// <returns></returns>
public override string ToString()
{
return String.Format("<{0}, {1}, {2}>", X, Y, Z);
}
#endregion Overrides
#region Operators
/// <summary>
///
/// </summary>
/// <param name="lhs"></param>
/// <param name="rhs"></param>
/// <returns></returns>
public static bool operator ==(LLVector3d lhs, LLVector3d rhs)
{
return (lhs.X == rhs.X && lhs.Y == rhs.Y && lhs.Z == rhs.Z);
}
/// <summary>
///
/// </summary>
/// <param name="lhs"></param>
/// <param name="rhs"></param>
/// <returns></returns>
public static bool operator !=(LLVector3d lhs, LLVector3d rhs)
{
return !(lhs == rhs);
}
#endregion Operators
/// <summary>An LLVector3d with a value of 0,0,0</summary>
public static readonly LLVector3d Zero = new LLVector3d();
}
/// <summary>
/// A four-dimensional vector
/// </summary>
public struct LLVector4
{
/// <summary></summary>
public float X;
/// <summary></summary>
public float Y;
/// <summary></summary>
public float Z;
/// <summary></summary>
public float S;
// Used for little to big endian conversion on big endian architectures
private byte[] conversionBuffer;
#region Constructors
/// <summary>
/// Constructor, sets the vector members according to parameters
/// </summary>
/// <param name="x">X value</param>
/// <param name="y">Y value</param>
/// <param name="z">Z value</param>
/// <param name="s">S value</param>
public LLVector4(float x, float y, float z, float s)
{
conversionBuffer = null;
X = x;
Y = y;
Z = z;
S = s;
}
/// <summary>
///
/// </summary>
/// <param name="byteArray"></param>
/// <param name="pos"></param>
public LLVector4(byte[] byteArray, int pos)
{
conversionBuffer = null;
X = Y = Z = S = 0;
FromBytes(byteArray, pos);
}
#endregion Constructors
#region Public Methods
/// <summary>
///
/// </summary>
/// <param name="byteArray"></param>
/// <param name="pos"></param>
public void FromBytes(byte[] byteArray, int pos)
{
if (!BitConverter.IsLittleEndian)
{
// Big endian architecture
if (conversionBuffer == null)
conversionBuffer = new byte[16];
Buffer.BlockCopy(byteArray, pos, conversionBuffer, 0, 16);
Array.Reverse(conversionBuffer, 0, 4);
Array.Reverse(conversionBuffer, 4, 4);
Array.Reverse(conversionBuffer, 8, 4);
Array.Reverse(conversionBuffer, 12, 4);
X = BitConverter.ToSingle(conversionBuffer, 0);
Y = BitConverter.ToSingle(conversionBuffer, 4);
Z = BitConverter.ToSingle(conversionBuffer, 8);
S = BitConverter.ToSingle(conversionBuffer, 12);
}
else
{
// Little endian architecture
X = BitConverter.ToSingle(byteArray, pos);
Y = BitConverter.ToSingle(byteArray, pos + 4);
Z = BitConverter.ToSingle(byteArray, pos + 8);
S = BitConverter.ToSingle(byteArray, pos + 12);
}
}
/// <summary>
///
/// </summary>
/// <returns></returns>
public byte[] GetBytes()
{
byte[] byteArray = new byte[16];
Buffer.BlockCopy(BitConverter.GetBytes(X), 0, byteArray, 0, 4);
Buffer.BlockCopy(BitConverter.GetBytes(Y), 0, byteArray, 4, 4);
Buffer.BlockCopy(BitConverter.GetBytes(Z), 0, byteArray, 8, 4);
Buffer.BlockCopy(BitConverter.GetBytes(S), 0, byteArray, 12, 4);
if(!BitConverter.IsLittleEndian)
{
Array.Reverse(byteArray, 0, 4);
Array.Reverse(byteArray, 4, 4);
Array.Reverse(byteArray, 8, 4);
Array.Reverse(byteArray, 12, 4);
}
return byteArray;
}
public LLSD ToLLSD()
{
LLSDArray array = new LLSDArray();
array.Add(LLSD.FromReal(X));
array.Add(LLSD.FromReal(Y));
array.Add(LLSD.FromReal(Z));
array.Add(LLSD.FromReal(S));
return array;
}
#endregion Public Methods
#region Static Methods
public static LLVector4 FromLLSD(LLSD llsd)
{
if (llsd.Type == LLSDType.Array)
{
LLSDArray array = (LLSDArray)llsd;
if (array.Count == 4)
{
return new LLVector4(
(float)array[0].AsReal(),
(float)array[1].AsReal(),
(float)array[2].AsReal(),
(float)array[3].AsReal());
}
}
return LLVector4.Zero;
}
#endregion Static Methods
#region Overrides
/// <summary>
/// A hash of the vector, used by .NET for hash tables
/// </summary>
/// <returns>The hashes of the individual components XORed together</returns>
public override int GetHashCode()
{
return (X.GetHashCode() ^ Y.GetHashCode() ^ Z.GetHashCode() ^ S.GetHashCode());
}
/// <summary>
///
/// </summary>
/// <param name="o"></param>
/// <returns></returns>
public override bool Equals(object o)
{
if (!(o is LLVector4)) return false;
LLVector4 vector = (LLVector4)o;
return (X == vector.X && Y == vector.Y && Z == vector.Z && S == vector.S);
}
/// <summary>
///
/// </summary>
/// <returns></returns>
public override string ToString()
{
return String.Format("<{0}, {1}, {2}, {3}>", X, Y, Z, S);
}
#endregion Overrides
#region Operators
/// <summary>
///
/// </summary>
/// <param name="lhs"></param>
/// <param name="rhs"></param>
/// <returns></returns>
public static bool operator ==(LLVector4 lhs, LLVector4 rhs)
{
return (lhs.X == rhs.X && lhs.Y == rhs.Y && lhs.Z == rhs.Z && lhs.S == rhs.S);
}
/// <summary>
///
/// </summary>
/// <param name="lhs"></param>
/// <param name="rhs"></param>
/// <returns></returns>
public static bool operator !=(LLVector4 lhs, LLVector4 rhs)
{
return !(lhs == rhs);
}
public static LLVector4 operator +(LLVector4 lhs, LLVector4 rhs)
{
return new LLVector4(lhs.X + rhs.X, lhs.Y + rhs.Y, lhs.Z + rhs.Z, lhs.S + rhs.S);
}
/// <summary>
///
/// </summary>
/// <param name="lhs"></param>
/// <param name="rhs"></param>
/// <returns></returns>
public static LLVector4 operator -(LLVector4 lhs, LLVector4 rhs)
{
return new LLVector4(lhs.X - rhs.X, lhs.Y - rhs.Y, lhs.Z - rhs.Z, lhs.S - rhs.S);
}
/// <summary>
///
/// </summary>
/// <param name="vec"></param>
/// <param name="val"></param>
/// <returns></returns>
public static LLVector4 operator *(LLVector4 vec, float val)
{
return new LLVector4(vec.X * val, vec.Y * val, vec.Z * val, vec.S * val);
}
/// <summary>
///
/// </summary>
/// <param name="val"></param>
/// <param name="vec"></param>
/// <returns></returns>
public static LLVector4 operator *(float val, LLVector4 vec)
{
return new LLVector4(vec.X * val, vec.Y * val, vec.Z * val, vec.S * val);
}
/// <summary>
///
/// </summary>
/// <param name="lhs"></param>
/// <param name="rhs"></param>
/// <returns></returns>
public static LLVector4 operator *(LLVector4 lhs, LLVector4 rhs)
{
return new LLVector4(lhs.X * rhs.X, lhs.Y * rhs.Y, lhs.Z * rhs.Z, lhs.S * rhs.S);
}
#endregion Operators
/// <summary>An LLVector4 with a value of 0,0,0,0</summary>
public readonly static LLVector4 Zero = new LLVector4();
}
/// <summary>
/// An 8-bit color structure including an alpha channel
/// </summary>
public struct LLColor
{
/// <summary>Red</summary>
public float R;
/// <summary>Green</summary>
public float G;
/// <summary>Blue</summary>
public float B;
/// <summary>Alpha</summary>
public float A;
#region Constructors
/// <summary>
///
/// </summary>
/// <param name="r"></param>
/// <param name="g"></param>
/// <param name="b"></param>
/// <param name="a"></param>
public LLColor(byte r, byte g, byte b, byte a)
{
float quanta = 1.0f / 255.0f;
R = (float)r * quanta;
G = (float)g * quanta;
B = (float)b * quanta;
A = (float)a * quanta;
}
public LLColor(float r, float g, float b, float a)
{
// Valid range is from 0.0 to 1.0
R = Helpers.Clamp(r, 0f, 1f);
G = Helpers.Clamp(g, 0f, 1f);
B = Helpers.Clamp(b, 0f, 1f);
A = Helpers.Clamp(a, 0f, 1f);
}
public LLColor(byte[] byteArray, int pos, bool inverted)
{
const float quanta = 1.0f / 255.0f;
if (inverted)
{
R = (float)(255 - byteArray[pos]) * quanta;
G = (float)(255 - byteArray[pos + 1]) * quanta;
B = (float)(255 - byteArray[pos + 2]) * quanta;
A = (float)(255 - byteArray[pos + 3]) * quanta;
}
else
{
R = (float)byteArray[pos] * quanta;
G = (float)byteArray[pos + 1] * quanta;
B = (float)byteArray[pos + 2] * quanta;
A = (float)byteArray[pos + 3] * quanta;
}
}
#endregion Constructors
#region Public Methods
/// <summary>
///
/// </summary>
/// <returns></returns>
public byte[] GetBytes()
{
byte[] byteArray = new byte[4];
byteArray[0] = Helpers.FloatToByte(R, 0f, 1f);
byteArray[1] = Helpers.FloatToByte(G, 0f, 1f);
byteArray[2] = Helpers.FloatToByte(B, 0f, 1f);
byteArray[3] = Helpers.FloatToByte(A, 0f, 1f);
return byteArray;
}
public byte[] GetInvertedBytes()
{
byte[] byteArray = GetBytes();
byteArray[0] = (byte)(255 - byteArray[0]);
byteArray[1] = (byte)(255 - byteArray[1]);
byteArray[2] = (byte)(255 - byteArray[2]);
byteArray[3] = (byte)(255 - byteArray[3]);
return byteArray;
}
/// <summary>
///
/// </summary>
/// <returns></returns>
public string ToStringRGB()
{
return String.Format("<{0}, {1}, {2}>", R, G, B);
}
/// <summary>
///
/// </summary>
/// <returns></returns>
public LLSD ToLLSD()
{
LLSDArray array = new LLSDArray();
array.Add(LLSD.FromReal(R));
array.Add(LLSD.FromReal(G));
array.Add(LLSD.FromReal(B));
array.Add(LLSD.FromReal(A));
return array;
}
#endregion Public Methods
#region Static Methods
public static LLColor FromLLSD(LLSD llsd)
{
if (llsd.Type == LLSDType.Array)
{
LLSDArray array = (LLSDArray)llsd;
if (array.Count == 4)
{
return new LLColor(
(float)array[0].AsReal(),
(float)array[1].AsReal(),
(float)array[2].AsReal(),
(float)array[3].AsReal());
}
}
return LLColor.Black;
}
#endregion Static Methods
#region Overrides
/// <summary>
///
/// </summary>
/// <returns></returns>
public override string ToString()
{
return String.Format("<{0}, {1}, {2}, {3}>", R, G, B, A);
}
/// <summary>
///
/// </summary>
/// <param name="obj"></param>
/// <returns></returns>
public override bool Equals(object obj)
{
if (obj is LLColor)
{
LLColor c = (LLColor)obj;
return (R == c.R) && (G == c.G) && (B == c.B) && (A == c.A);
}
return false;
}
/// <summary>
///
/// </summary>
/// <returns></returns>
public override int GetHashCode()
{
return R.GetHashCode() ^ G.GetHashCode() ^ B.GetHashCode() ^ A.GetHashCode();
}
#endregion Overrides
#region Operators
/// <summary>
/// Comparison operator
/// </summary>
/// <param name="lhs"></param>
/// <param name="rhs"></param>
/// <returns></returns>
public static bool operator ==(LLColor lhs, LLColor rhs)
{
// Return true if the fields match:
return lhs.R == rhs.R && lhs.G == rhs.G && lhs.B == rhs.B && lhs.A == rhs.A;
}
/// <summary>
/// Not comparison operator
/// </summary>
/// <param name="lhs"></param>
/// <param name="rhs"></param>
/// <returns></returns>
public static bool operator !=(LLColor lhs, LLColor rhs)
{
return !(lhs == rhs);
}
#endregion Operators
/// <summary>An LLColor with a value of 0,0,0,255</summary>
public readonly static LLColor Black = new LLColor(0, 0, 0, 255);
}
/// <summary>
/// A quaternion, used for rotations
/// </summary>
public struct LLQuaternion
{
/// <summary>X value</summary>
public float X;
/// <summary>Y value</summary>
public float Y;
/// <summary>Z value</summary>
public float Z;
/// <summary>W value</summary>
public float W;
// Used for little to big endian conversion on big endian architectures
private byte[] conversionBuffer;
#region Constructors
/// <summary>
/// Constructor, builds a quaternion object from a byte array
/// </summary>
/// <param name="byteArray">The source byte array</param>
/// <param name="pos">Offset in the byte array to start reading at</param>
/// <param name="normalized">Whether the source data is normalized or
/// not. If this is true 12 bytes will be read, otherwise 16 bytes will
/// be read.</param>
public LLQuaternion(byte[] byteArray, int pos, bool normalized)
{
conversionBuffer = null;
X = Y = Z = W = 0;
FromBytes(byteArray, pos, normalized);
}
/// <summary>
/// Build a quaternion from normalized float values
/// </summary>
/// <param name="x">X value from -1.0 to 1.0</param>
/// <param name="y">Y value from -1.0 to 1.0</param>
/// <param name="z">Z value from -1.0 to 1.0</param>
public LLQuaternion(float x, float y, float z)
{
conversionBuffer = null;
X = x;
Y = y;
Z = z;
float xyzsum = 1 - X * X - Y * Y - Z * Z;
W = (xyzsum > 0) ? (float)Math.Sqrt(xyzsum) : 0;
}
/// <summary>
/// Build a quaternion from individual float values
/// </summary>
/// <param name="x">X value</param>
/// <param name="y">Y value</param>
/// <param name="z">Z value</param>
/// <param name="w">W value</param>
public LLQuaternion(float x, float y, float z, float w)
{
conversionBuffer = null;
X = x;
Y = y;
Z = z;
W = w;
}
/// <summary>
/// Build a quaternion from an angle and a vector
/// </summary>
/// <param name="angle">Angle value</param>
/// <param name="vector">Vector value</param>
public LLQuaternion(float angle, LLVector3 vector)
{
conversionBuffer = null;
vector = LLVector3.Norm(vector);
angle *= 0.5f;
float c = (float)Math.Cos(angle);
float s = (float)Math.Sin(angle);
X = vector.X * s;
Y = vector.Y * s;
Z = vector.Z * s;
W = c;
this = Norm(this);
}
#endregion Constructors
#region Public Methods
/// <summary>
/// Builds a quaternion object from a byte array
/// </summary>
/// <param name="byteArray">The source byte array</param>
/// <param name="pos">Offset in the byte array to start reading at</param>
/// <param name="normalized">Whether the source data is normalized or
/// not. If this is true 12 bytes will be read, otherwise 16 bytes will
/// be read.</param>
public void FromBytes(byte[] byteArray, int pos, bool normalized)
{
if (!normalized)
{
if (!BitConverter.IsLittleEndian)
{
// Big endian architecture
if (conversionBuffer == null)
conversionBuffer = new byte[16];
Buffer.BlockCopy(byteArray, pos, conversionBuffer, 0, 16);
Array.Reverse(conversionBuffer, 0, 4);
Array.Reverse(conversionBuffer, 4, 4);
Array.Reverse(conversionBuffer, 8, 4);
Array.Reverse(conversionBuffer, 12, 4);
X = BitConverter.ToSingle(conversionBuffer, 0);
Y = BitConverter.ToSingle(conversionBuffer, 4);
Z = BitConverter.ToSingle(conversionBuffer, 8);
W = BitConverter.ToSingle(conversionBuffer, 12);
}
else
{
// Little endian architecture
X = BitConverter.ToSingle(byteArray, pos);
Y = BitConverter.ToSingle(byteArray, pos + 4);
Z = BitConverter.ToSingle(byteArray, pos + 8);
W = BitConverter.ToSingle(byteArray, pos + 12);
}
}
else
{
if (!BitConverter.IsLittleEndian)
{
// Big endian architecture
if (conversionBuffer == null)
conversionBuffer = new byte[16];
Buffer.BlockCopy(byteArray, pos, conversionBuffer, 0, 12);
Array.Reverse(conversionBuffer, 0, 4);
Array.Reverse(conversionBuffer, 4, 4);
Array.Reverse(conversionBuffer, 8, 4);
X = BitConverter.ToSingle(conversionBuffer, 0);
Y = BitConverter.ToSingle(conversionBuffer, 4);
Z = BitConverter.ToSingle(conversionBuffer, 8);
}
else
{
// Little endian architecture
X = BitConverter.ToSingle(byteArray, pos);
Y = BitConverter.ToSingle(byteArray, pos + 4);
Z = BitConverter.ToSingle(byteArray, pos + 8);
}
float xyzsum = 1 - X * X - Y * Y - Z * Z;
W = (xyzsum > 0) ? (float)Math.Sqrt(xyzsum) : 0;
}
}
/// <summary>
/// Normalize this quaternion and serialize it to a byte array
/// </summary>
/// <returns>A 12 byte array containing normalized X, Y, and Z floating
/// point values in order using little endian byte ordering</returns>
public byte[] GetBytes()
{
byte[] bytes = new byte[12];
float norm;
norm = (float)Math.Sqrt(X * X + Y * Y + Z * Z + W * W);
if (norm != 0)
{
norm = 1 / norm;
Buffer.BlockCopy(BitConverter.GetBytes(norm * X), 0, bytes, 0, 4);
Buffer.BlockCopy(BitConverter.GetBytes(norm * Y), 0, bytes, 4, 4);
Buffer.BlockCopy(BitConverter.GetBytes(norm * Z), 0, bytes, 8, 4);
if (!BitConverter.IsLittleEndian)
{
Array.Reverse(bytes, 0, 4);
Array.Reverse(bytes, 4, 4);
Array.Reverse(bytes, 8, 4);
}
}
else
{
throw new Exception("Quaternion " + this.ToString() + " normalized to zero");
}
return bytes;
}
public LLSD ToLLSD()
{
LLSDArray array = new LLSDArray();
array.Add(LLSD.FromReal(X));
array.Add(LLSD.FromReal(Y));
array.Add(LLSD.FromReal(Z));
array.Add(LLSD.FromReal(W));
return array;
}
#endregion Public Methods
#region Static Methods
public static LLQuaternion FromLLSD(LLSD llsd)
{
if (llsd.Type == LLSDType.Array)
{
LLSDArray array = (LLSDArray)llsd;
if (array.Count == 4)
{
return new LLQuaternion(
(float)array[0].AsReal(),
(float)array[1].AsReal(),
(float)array[2].AsReal(),
(float)array[3].AsReal());
}
}
return LLQuaternion.Identity;
}
/// <summary>
/// Calculate the magnitude of the supplied quaternion
/// </summary>
public static float Mag(LLQuaternion q)
{
return (float)Math.Sqrt(q.W * q.W + q.X * q.X + q.Y * q.Y + q.Z * q.Z);
}
/// <summary>
/// Returns a normalized version of the supplied quaternion
/// </summary>
/// <param name="q">The quaternion to normalize</param>
/// <returns>A normalized version of the quaternion</returns>
public static LLQuaternion Norm(LLQuaternion q)
{
const float MAG_THRESHOLD = 0.0000001f;
float mag = (float)Math.Sqrt(q.X * q.X + q.Y * q.Y + q.Z * q.Z + q.W * q.W);
if (mag > MAG_THRESHOLD)
{
float oomag = 1.0f / mag;
q.X *= oomag;
q.Y *= oomag;
q.Z *= oomag;
q.W *= oomag;
}
else
{
q.X = 0.0f;
q.Y = 0.0f;
q.Z = 0.0f;
q.W = 1.0f;
}
return q;
}
/// <summary>
/// Returns the inverse matrix from a quaternion, or the correct
/// matrix if the quaternion is inverse
/// </summary>
/// <param name="q">Quaternion to convert to a matrix</param>
/// <returns>A matrix representation of the quaternion</returns>
public static LLMatrix3 GetMatrix(LLQuaternion q)
{
LLMatrix3 m;
float xx, xy, xz, xw, yy, yz, yw, zz, zw;
xx = q.X * q.X;
xy = q.X * q.Y;
xz = q.X * q.Z;
xw = q.X * q.W;
yy = q.Y * q.Y;
yz = q.Y * q.Z;
yw = q.Y * q.W;
zz = q.Z * q.Z;
zw = q.Z * q.W;
m.M11 = 1f - 2f * (yy + zz);
m.M12 = 2f * (xy + zw);
m.M13 = 2f * (xz - yw);
m.M21 = 2f * (xy - zw);
m.M22 = 1f - 2f * (xx + zz);
m.M23 = 2f * (yz + xw);
m.M31 = 2f * (xz + yw);
m.M32 = 2f * (yz - xw);
m.M33 = 1f - 2f * (xx + yy);
return m;
}
public static LLQuaternion SetQuaternion(float angle, float x, float y, float z)
{
LLVector3 vec = new LLVector3(x, y, z);
return SetQuaternion(angle, vec);
}
public static LLQuaternion SetQuaternion(float angle, LLVector3 vec)
{
LLQuaternion quat = new LLQuaternion();
vec = LLVector3.Norm(vec);
angle *= 0.5f;
float c = (float)Math.Cos(angle);
float s = (float)Math.Sin(angle);
quat.X = vec.X * s;
quat.Y = vec.Y * s;
quat.Z = vec.Z * s;
quat.W = c;
quat = LLQuaternion.Norm(quat);
return quat;
}
#endregion Static Methods
#region Overrides
/// <summary>
///
/// </summary>
/// <returns></returns>
public override int GetHashCode()
{
return (X.GetHashCode() ^ Y.GetHashCode() ^ Z.GetHashCode() ^ W.GetHashCode());
}
/// <summary>
///
/// </summary>
/// <param name="o"></param>
/// <returns></returns>
public override bool Equals(object o)
{
if (!(o is LLQuaternion)) return false;
LLQuaternion quaternion = (LLQuaternion)o;
return X == quaternion.X && Y == quaternion.Y && Z == quaternion.Z && W == quaternion.W;
}
/// <summary>
///
/// </summary>
/// <returns></returns>
public override string ToString()
{
return "<" + X.ToString() + ", " + Y.ToString() + ", " + Z.ToString() + ", " + W.ToString() + ">";
}
#endregion Overrides
#region Operators
/// <summary>
/// Comparison operator
/// </summary>
/// <param name="lhs"></param>
/// <param name="rhs"></param>
/// <returns></returns>
public static bool operator ==(LLQuaternion lhs, LLQuaternion rhs)
{
// Return true if the fields match:
return lhs.X == rhs.X && lhs.Y == rhs.Y && lhs.Z == rhs.Z && lhs.W == rhs.W;
}
/// <summary>
/// Not comparison operator
/// </summary>
/// <param name="lhs"></param>
/// <param name="rhs"></param>
/// <returns></returns>
public static bool operator !=(LLQuaternion lhs, LLQuaternion rhs)
{
return !(lhs == rhs);
}
/// <summary>
/// Multiplication operator
/// </summary>
/// <param name="lhs"></param>
/// <param name="rhs"></param>
/// <returns></returns>
public static LLQuaternion operator *(LLQuaternion lhs, LLQuaternion rhs)
{
LLQuaternion ret = new LLQuaternion();
ret.W = lhs.W * rhs.W - lhs.X * rhs.X - lhs.Y * rhs.Y - lhs.Z * rhs.Z;
ret.X = lhs.W * rhs.X + lhs.X * rhs.W + lhs.Y * rhs.Z - lhs.Z * rhs.Y;
ret.Y = lhs.W * rhs.Y + lhs.Y * rhs.W + lhs.Z * rhs.X - lhs.X * rhs.Z;
ret.Z = lhs.W * rhs.Z + lhs.Z * rhs.W + lhs.X * rhs.Y - lhs.Y * rhs.X;
return ret;
}
#endregion Operators
/// <summary>An LLQuaternion with a value of 0,0,0,1</summary>
public readonly static LLQuaternion Identity = new LLQuaternion(0f, 0f, 0f, 1f);
}
/// <summary>
///
/// </summary>
public struct LLMatrix3
{
public float M11, M12, M13;
public float M21, M22, M23;
public float M31, M32, M33;
#region Properties
public float Trace
{
get
{
return M11 + M22 + M33;
}
}
public float Determinant
{
get
{
return M11 * M22 * M33 + M12 * M23 * M31 + M13 * M21 * M32 -
M13 * M22 * M31 - M11 * M23 * M32 - M12 * M21 * M33;
}
}
#endregion Properties
#region Constructors
public LLMatrix3(float m11, float m12, float m13, float m21, float m22, float m23, float m31, float m32, float m33)
{
M11 = m11;
M12 = m12;
M13 = m13;
M21 = m21;
M22 = m22;
M23 = m23;
M31 = m31;
M32 = m32;
M33 = m33;
}
public LLMatrix3(LLMatrix3 m)
{
M11 = m.M11;
M12 = m.M12;
M13 = m.M13;
M21 = m.M21;
M22 = m.M22;
M23 = m.M23;
M31 = m.M31;
M32 = m.M32;
M33 = m.M33;
}
public LLMatrix3(LLQuaternion q)
{
this = LLQuaternion.GetMatrix(q);
}
#endregion Constructors
#region Public Methods
/// <summary>
/// Transposes this matrix
/// </summary>
public void Transpose()
{
Helpers.Swap<float>(ref M12, ref M21);
Helpers.Swap<float>(ref M13, ref M31);
Helpers.Swap<float>(ref M23, ref M32);
}
public void Orthogonalize()
{
LLVector3 xAxis = this[0];
LLVector3 yAxis = this[1];
LLVector3 zAxis = this[2];
xAxis = LLVector3.Norm(xAxis);
yAxis -= xAxis * (xAxis * yAxis);
yAxis = LLVector3.Norm(yAxis);
zAxis = LLVector3.Cross(xAxis, yAxis);
this[0] = xAxis;
this[1] = yAxis;
this[2] = zAxis;
}
public void GetEulerAngles(out float roll, out float pitch, out float yaw)
{
// From the Matrix and Quaternion FAQ: http://www.j3d.org/matrix_faq/matrfaq_latest.html
double angleX, angleY, angleZ;
double cx, cy, cz; // cosines
double sx, sz; // sines
angleY = Math.Asin(Helpers.Clamp(M31, -1f, 1f));
cy = Math.Cos(angleY);
if (Math.Abs(cy) > 0.005f)
{
// No gimbal lock
cx = M33 / cy;
sx = (-M32) / cy;
angleX = (float)Math.Atan2(sx, cx);
cz = M11 / cy;
sz = (-M21) / cy;
angleZ = (float)Math.Atan2(sz, cz);
}
else
{
// Gimbal lock
angleX = 0;
cz = M22;
sz = M12;
angleZ = Math.Atan2(sz, cz);
}
roll = (float)angleX;
pitch = (float)angleY;
yaw = (float)angleZ;
}
#endregion Public Methods
#region Static Methods
public static LLMatrix3 Add(LLMatrix3 left, LLMatrix3 right)
{
return new LLMatrix3(
left.M11 + right.M11, left.M12 + right.M12, left.M13 + right.M13,
left.M21 + right.M21, left.M22 + right.M22, left.M23 + right.M23,
left.M31 + right.M31, left.M32 + right.M32, left.M33 + right.M33
);
}
public static LLMatrix3 Add(LLMatrix3 matrix, float scalar)
{
return new LLMatrix3(
matrix.M11 + scalar, matrix.M12 + scalar, matrix.M13 + scalar,
matrix.M21 + scalar, matrix.M22 + scalar, matrix.M23 + scalar,
matrix.M31 + scalar, matrix.M32 + scalar, matrix.M33 + scalar
);
}
public static LLMatrix3 Subtract(LLMatrix3 left, LLMatrix3 right)
{
return new LLMatrix3(
left.M11 - right.M11, left.M12 - right.M12, left.M13 - right.M13,
left.M21 - right.M21, left.M22 - right.M22, left.M23 - right.M23,
left.M31 - right.M31, left.M32 - right.M32, left.M33 - right.M33
);
}
public static LLMatrix3 Subtract(LLMatrix3 matrix, float scalar)
{
return new LLMatrix3(
matrix.M11 - scalar, matrix.M12 - scalar, matrix.M13 - scalar,
matrix.M21 - scalar, matrix.M22 - scalar, matrix.M23 - scalar,
matrix.M31 - scalar, matrix.M32 - scalar, matrix.M33 - scalar
);
}
public static LLMatrix3 Multiply(LLMatrix3 left, LLMatrix3 right)
{
return new LLMatrix3(
left.M11 * right.M11 + left.M12 * right.M21 + left.M13 * right.M31,
left.M11 * right.M12 + left.M12 * right.M22 + left.M13 * right.M32,
left.M11 * right.M13 + left.M12 * right.M23 + left.M13 * right.M33,
left.M21 * right.M11 + left.M22 * right.M21 + left.M23 * right.M31,
left.M21 * right.M12 + left.M22 * right.M22 + left.M23 * right.M32,
left.M21 * right.M13 + left.M22 * right.M23 + left.M23 * right.M33,
left.M31 * right.M11 + left.M32 * right.M21 + left.M33 * right.M31,
left.M31 * right.M12 + left.M32 * right.M22 + left.M33 * right.M32,
left.M31 * right.M13 + left.M32 * right.M23 + left.M33 * right.M33
);
}
public static LLVector3 Transform(LLVector3 vector, LLMatrix3 matrix)
{
// Operates "from the right" on row vector
return new LLVector3(
vector.X * matrix.M11 + vector.Y * matrix.M21 + vector.Z * matrix.M31,
vector.X * matrix.M12 + vector.Y * matrix.M22 + vector.Z * matrix.M32,
vector.X * matrix.M13 + vector.Y * matrix.M23 + vector.Z * matrix.M33
);
}
public static LLMatrix3 Transpose(LLMatrix3 m)
{
LLMatrix3 t = new LLMatrix3(m);
t.Transpose();
return t;
}
#endregion Static Methods
#region Overrides
public override int GetHashCode()
{
return
M11.GetHashCode() ^ M12.GetHashCode() ^ M13.GetHashCode() ^
M21.GetHashCode() ^ M22.GetHashCode() ^ M23.GetHashCode() ^
M31.GetHashCode() ^ M32.GetHashCode() ^ M33.GetHashCode();
}
public override bool Equals(object obj)
{
if (obj is LLMatrix3)
{
LLMatrix3 m = (LLMatrix3)obj;
return
(M11 == m.M11) && (M12 == m.M12) && (M13 == m.M13) &&
(M21 == m.M21) && (M22 == m.M22) && (M23 == m.M23) &&
(M31 == m.M31) && (M32 == m.M32) && (M33 == m.M33);
}
return false;
}
public override string ToString()
{
return string.Format("[{0}, {1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}]",
M11, M12, M13, M21, M22, M23, M31, M32, M33);
}
#endregion Overrides
#region Operators
public static bool operator ==(LLMatrix3 left, LLMatrix3 right)
{
return ValueType.Equals(left, right);
}
public static bool operator !=(LLMatrix3 left, LLMatrix3 right)
{
return !ValueType.Equals(left, right);
}
public static LLMatrix3 operator +(LLMatrix3 left, LLMatrix3 right)
{
return LLMatrix3.Add(left, right);
}
public static LLMatrix3 operator +(LLMatrix3 matrix, float scalar)
{
return LLMatrix3.Add(matrix, scalar);
}
public static LLMatrix3 operator +(float scalar, LLMatrix3 matrix)
{
return LLMatrix3.Add(matrix, scalar);
}
public static LLMatrix3 operator -(LLMatrix3 left, LLMatrix3 right)
{
return LLMatrix3.Subtract(left, right); ;
}
public static LLMatrix3 operator -(LLMatrix3 matrix, float scalar)
{
return LLMatrix3.Subtract(matrix, scalar);
}
public static LLMatrix3 operator *(LLMatrix3 left, LLMatrix3 right)
{
return LLMatrix3.Multiply(left, right); ;
}
public static LLVector3 operator *(LLVector3 vector, LLMatrix3 matrix)
{
return LLMatrix3.Transform(vector, matrix);
}
public LLVector3 this[int row]
{
get
{
switch (row)
{
case 0:
return new LLVector3(M11, M12, M13);
case 1:
return new LLVector3(M21, M22, M23);
case 2:
return new LLVector3(M31, M32, M33);
default:
throw new IndexOutOfRangeException("LLMatrix3 row index must be from 0-2");
}
}
set
{
switch (row)
{
case 0:
M11 = value.X;
M12 = value.Y;
M13 = value.Z;
break;
case 1:
M21 = value.X;
M22 = value.Y;
M23 = value.Z;
break;
case 2:
M31 = value.X;
M32 = value.Y;
M33 = value.Z;
break;
default:
throw new IndexOutOfRangeException("LLMatrix3 row index must be from 0-2");
}
}
}
public float this[int row, int column]
{
get
{
switch (row)
{
case 0:
switch (column)
{
case 0:
return M11;
case 1:
return M12;
case 2:
return M13;
default:
throw new IndexOutOfRangeException("LLMatrix3 row and column values must be from 0-2");
}
case 1:
switch (column)
{
case 0:
return M21;
case 1:
return M22;
case 2:
return M23;
default:
throw new IndexOutOfRangeException("LLMatrix3 row and column values must be from 0-2");
}
case 2:
switch (column)
{
case 0:
return M31;
case 1:
return M32;
case 2:
return M33;
default:
throw new IndexOutOfRangeException("LLMatrix3 row and column values must be from 0-2");
}
default:
throw new IndexOutOfRangeException("LLMatrix3 row and column values must be from 0-2");
}
}
set
{
//FIXME:
throw new NotImplementedException();
}
}
#endregion Operators
/// <summary>A 3x3 matrix set to all zeroes</summary>
public static readonly LLMatrix3 Zero = new LLMatrix3();
/// <summary>A 3x3 identity matrix</summary>
public static readonly LLMatrix3 Identity = new LLMatrix3(
1f, 0f, 0f,
0f, 1f, 0f,
0f, 0f, 1f
);
}
}